[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 105, 3 ] =
C_105(1,41).
(I) Following is a form readable by MAGMA:
g:=Graph<105|{ {2, 3}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23},
{20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18,
19}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46,
47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {1, 2}, {101, 102}, {97,
98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65,
66}, {61, 62}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {3,
4}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11,
12}, {19, 20}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {103, 104}, {87, 88}, {71,
72}, {23, 24}, {39, 40}, {55, 56}, {15, 16}, {79, 80}, {47, 48}, {2, 43}, {64,
105}, {22, 63}, {20, 61}, {4, 45}, {6, 47}, {16, 57}, {18, 59}, {1, 42}, {21,
62}, {5, 46}, {17, 58}, {3, 44}, {19, 60}, {7, 48}, {15, 56}, {8, 49}, {10, 51},
{12, 53}, {14, 55}, {9, 50}, {13, 54}, {11, 52}, {95, 96}, {31, 32}, {1, 65},
{30, 94}, {29, 93}, {28, 92}, {27, 91}, {26, 90}, {25, 89}, {24, 88}, {23, 87},
{22, 86}, {21, 85}, {20, 84}, {19, 83}, {2, 66}, {3, 67}, {4, 68}, {5, 69}, {6,
70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11, 75}, {12, 76}, {13, 77}, {14,
78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {31, 95}, {32, 96}, {33, 97}, {34,
98}, {35, 99}, {36, 100}, {37, 101}, {38, 102}, {39, 103}, {40, 104}, {41, 105},
{23, 64}, {63, 104}, {31, 72}, {55, 96}, {24, 65}, {62, 103}, {60, 101}, {58,
99}, {30, 71}, {28, 69}, {26, 67}, {56, 97}, {25, 66}, {61, 102}, {57, 98}, {29,
70}, {27, 68}, {59, 100}, {1, 105}, {32, 73}, {34, 75}, {36, 77}, {38, 79}, {48,
89}, {50, 91}, {52, 93}, {54, 95}, {33, 74}, {37, 78}, {49, 90}, {53, 94}, {35,
76}, {51, 92}, {39, 80}, {47, 88}, {40, 81}, {42, 83}, {44, 85}, {46, 87}, {41,
82}, {45, 86}, {43, 84}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 42)(3, 83)(4, 19)(5, 60)(6, 101)(7, 37)(8, 78)(9, 14)(10, 55)(11, 96)(12,
32)(13, 73)(15, 50)(16, 91)(17, 27)(18, 68)(20, 45)(21, 86)(23, 63)(24, 104)(25,
40)(26, 81)(28, 58)(29, 99)(30, 35)(31, 76)(33, 53)(34, 94)(36, 71)(38, 48)(39,
89)(41, 66)(44, 84)(46, 61)(47, 102)(49, 79)(51, 56)(52, 97)(54, 74)(57, 92)(59,
69)(62, 87)(65, 105)(67, 82)(70, 100)(72, 77)(75, 95)(80, 90)(88, 103)(93,
98) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 65)(3, 24)(4, 88)(5, 47)(7, 70)(8, 29)(9, 93)(10, 52)(12, 75)(13, 34)(14,
98)(15, 57)(17, 80)(18, 39)(19, 103)(20, 62)(22, 85)(23, 44)(25, 67)(27, 90)(28,
49)(30, 72)(32, 95)(33, 54)(35, 77)(37, 100)(38, 59)(40, 82)(42, 105)(43,
64)(45, 87)(48, 69)(50, 92)(53, 74)(55, 97)(58, 79)(60, 102)(63, 84)(68, 89)(73,
94)(78, 99)(83, 104)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105)
C4[ 105, 3 ]
105
-1 2 105 42 65
-2 66 1 3 43
-3 44 67 2 4
-4 45 68 3 5
-5 46 69 4 6
-6 47 70 5 7
-7 48 71 6 8
-8 49 72 7 9
-9 50 73 8 10
-10 11 51 74 9
-11 12 52 75 10
-12 11 13 53 76
-13 77 12 14 54
-14 55 78 13 15
-15 56 79 14 16
-16 57 80 15 17
-17 58 81 16 18
-18 59 82 17 19
-19 60 83 18 20
-20 61 84 19 21
-21 22 62 85 20
-22 23 63 86 21
-23 22 24 64 87
-24 88 23 25 65
-25 66 89 24 26
-26 67 90 25 27
-27 68 91 26 28
-28 69 92 27 29
-29 70 93 28 30
-30 71 94 29 31
-31 72 95 30 32
-32 33 73 96 31
-33 34 74 97 32
-34 33 35 75 98
-35 99 34 36 76
-36 77 100 35 37
-37 78 101 36 38
-38 79 102 37 39
-39 80 103 38 40
-40 81 104 39 41
-41 82 105 40 42
-42 1 83 41 43
-43 44 2 84 42
-44 45 3 85 43
-45 44 46 4 86
-46 45 47 5 87
-47 88 46 48 6
-48 89 47 49 7
-49 90 48 50 8
-50 91 49 51 9
-51 92 50 52 10
-52 11 93 51 53
-53 12 94 52 54
-54 55 13 95 53
-55 56 14 96 54
-56 55 57 15 97
-57 56 58 16 98
-58 99 57 59 17
-59 100 58 60 18
-60 101 59 61 19
-61 102 60 62 20
-62 103 61 63 21
-63 22 104 62 64
-64 23 105 63 65
-65 66 1 24 64
-66 67 2 25 65
-67 66 68 3 26
-68 67 69 4 27
-69 68 70 5 28
-70 69 71 6 29
-71 70 72 7 30
-72 71 73 8 31
-73 72 74 9 32
-74 33 73 75 10
-75 11 34 74 76
-76 77 12 35 75
-77 78 13 36 76
-78 77 79 14 37
-79 78 80 15 38
-80 79 81 16 39
-81 80 82 17 40
-82 81 83 18 41
-83 82 84 19 42
-84 83 85 20 43
-85 44 84 86 21
-86 22 45 85 87
-87 88 23 46 86
-88 89 24 47 87
-89 88 90 25 48
-90 89 91 26 49
-91 90 92 27 50
-92 91 93 28 51
-93 92 94 29 52
-94 93 95 30 53
-95 94 96 31 54
-96 55 95 97 32
-97 33 56 96 98
-98 99 34 57 97
-99 100 35 58 98
-100 99 101 36 59
-101 100 102 37 60
-102 101 103 38 61
-103 102 104 39 62
-104 103 105 40 63
-105 1 104 41 64
0