C4graphGraph forms for C4 [ 108, 3 ] = {4,4}_[9,6]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 108, 3 ] = {4,4}_[9,6].

(I) Following is a form readable by MAGMA:

g:=Graph<108|{ {2, 3}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {1, 2}, {105, 106}, {101, 102}, {97, 98}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {3, 4}, {107, 108}, {99, 100}, {43, 44}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {47, 48}, {79, 80}, {1, 37}, {27, 63}, {26, 62}, {2, 38}, {3, 39}, {8, 44}, {9, 45}, {10, 46}, {11, 47}, {16, 52}, {17, 53}, {18, 54}, {19, 55}, {24, 60}, {25, 61}, {64, 100}, {65, 101}, {66, 102}, {67, 103}, {72, 108}, {1, 36}, {73, 108}, {4, 40}, {5, 41}, {6, 42}, {7, 43}, {20, 56}, {21, 57}, {22, 58}, {23, 59}, {68, 104}, {69, 105}, {70, 106}, {71, 107}, {12, 48}, {13, 49}, {14, 50}, {15, 51}, {31, 32}, {95, 96}, {23, 80}, {31, 88}, {24, 81}, {30, 87}, {28, 85}, {26, 83}, {25, 82}, {29, 86}, {27, 84}, {16, 73}, {18, 75}, {20, 77}, {22, 79}, {17, 74}, {21, 78}, {28, 64}, {31, 67}, {30, 66}, {29, 65}, {60, 96}, {61, 97}, {62, 98}, {63, 99}, {2, 95}, {1, 94}, {19, 76}, {3, 96}, {7, 100}, {11, 104}, {15, 108}, {32, 68}, {43, 79}, {42, 78}, {41, 77}, {40, 76}, {35, 71}, {34, 70}, {33, 69}, {48, 84}, {49, 85}, {50, 86}, {51, 87}, {56, 92}, {57, 93}, {58, 94}, {59, 95}, {4, 97}, {6, 99}, {12, 105}, {14, 107}, {5, 98}, {13, 106}, {36, 72}, {39, 75}, {38, 74}, {37, 73}, {52, 88}, {53, 89}, {54, 90}, {55, 91}, {8, 101}, {37, 72}, {10, 103}, {9, 102}, {32, 89}, {36, 93}, {34, 91}, {33, 90}, {44, 80}, {45, 81}, {46, 82}, {47, 83}, {35, 92}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)
b: (2, 37)(3, 73)(4, 16)(5, 52)(6, 88)(7, 31)(8, 67)(9, 103)(11, 46)(12, 82)(13, 25)(14, 61)(15, 97)(17, 40)(18, 76)(20, 55)(21, 91)(22, 34)(23, 70)(24, 106)(26, 49)(27, 85)(29, 64)(30, 100)(32, 43)(33, 79)(35, 58)(36, 94)(39, 74)(41, 53)(42, 89)(44, 68)(45, 104)(48, 83)(50, 62)(51, 98)(54, 77)(57, 92)(59, 71)(60, 107)(63, 86)(66, 101)(69, 80)(72, 95)(78, 90)(81, 105)(87, 99)(96, 108)
c: (2, 36)(3, 35)(4, 34)(5, 33)(6, 32)(7, 31)(8, 30)(9, 29)(10, 28)(11, 27)(12, 26)(13, 25)(14, 24)(15, 23)(16, 22)(17, 21)(18, 20)(37, 94)(38, 93)(39, 92)(40, 91)(41, 90)(42, 89)(43, 88)(44, 87)(45, 86)(46, 85)(47, 84)(48, 83)(49, 82)(50, 81)(51, 80)(52, 79)(53, 78)(54, 77)(55, 76)(56, 75)(57, 74)(58, 73)(59, 108)(60, 107)(61, 106)(62, 105)(63, 104)(64, 103)(65, 102)(66, 101)(67, 100)(68, 99)(69, 98)(70, 97)(71, 96)(72, 95)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 108, 3 ]
108
-1 2 36 37 94
-2 1 3 38 95
-3 2 4 39 96
-4 3 5 40 97
-5 4 6 41 98
-6 99 5 7 42
-7 100 6 8 43
-8 44 101 7 9
-9 45 102 8 10
-10 11 46 103 9
-11 12 47 104 10
-12 11 13 48 105
-13 12 14 49 106
-14 13 15 50 107
-15 14 16 51 108
-16 15 17 73 52
-17 16 18 74 53
-18 17 19 75 54
-19 55 18 20 76
-20 77 56 19 21
-21 22 78 57 20
-22 23 79 58 21
-23 22 24 80 59
-24 23 25 81 60
-25 24 26 82 61
-26 25 27 83 62
-27 26 28 84 63
-28 27 29 85 64
-29 28 30 86 65
-30 66 29 31 87
-31 88 67 30 32
-32 33 89 68 31
-33 34 90 69 32
-34 33 35 91 70
-35 34 36 92 71
-36 1 35 93 72
-37 1 38 72 73
-38 2 37 39 74
-39 3 38 40 75
-40 4 39 41 76
-41 77 5 40 42
-42 78 6 41 43
-43 44 79 7 42
-44 45 80 8 43
-45 44 46 81 9
-46 45 47 82 10
-47 11 46 48 83
-48 12 47 49 84
-49 13 48 50 85
-50 14 49 51 86
-51 15 50 52 87
-52 88 16 51 53
-53 89 17 52 54
-54 55 90 18 53
-55 56 91 19 54
-56 55 57 92 20
-57 56 58 93 21
-58 22 57 59 94
-59 23 58 60 95
-60 24 59 61 96
-61 25 60 62 97
-62 26 61 63 98
-63 99 27 62 64
-64 100 28 63 65
-65 66 101 29 64
-66 67 102 30 65
-67 66 68 103 31
-68 67 69 104 32
-69 33 68 70 105
-70 34 69 71 106
-71 35 70 72 107
-72 36 37 71 108
-73 37 16 74 108
-74 38 17 73 75
-75 39 18 74 76
-76 77 40 19 75
-77 78 41 20 76
-78 77 79 42 21
-79 22 78 80 43
-80 44 23 79 81
-81 45 24 80 82
-82 46 25 81 83
-83 47 26 82 84
-84 48 27 83 85
-85 49 28 84 86
-86 50 29 85 87
-87 88 51 30 86
-88 89 52 31 87
-89 88 90 53 32
-90 33 89 91 54
-91 55 34 90 92
-92 56 35 91 93
-93 57 36 92 94
-94 1 58 93 95
-95 2 59 94 96
-96 3 60 95 97
-97 4 61 96 98
-98 99 5 62 97
-99 100 6 63 98
-100 99 101 7 64
-101 100 102 8 65
-102 66 101 103 9
-103 67 102 104 10
-104 11 68 103 105
-105 12 69 104 106
-106 13 70 105 107
-107 14 71 106 108
-108 15 72 73 107
0

**************