[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 4 ] =
{4,4}_<12,6>.
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {2, 3}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99},
{96, 97}, {94, 95}, {92, 93}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43},
{40, 41}, {38, 39}, {34, 35}, {32, 33}, {30, 31}, {4, 5}, {6, 7}, {8, 9}, {10,
11}, {12, 13}, {14, 15}, {16, 17}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {52, 53}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68,
69}, {70, 71}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86,
87}, {88, 89}, {1, 2}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {49, 50},
{45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70},
{73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {107, 108}, {99, 100},
{51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68},
{75, 76}, {83, 84}, {91, 92}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56},
{71, 72}, {87, 88}, {1, 19}, {45, 63}, {44, 62}, {41, 59}, {40, 58}, {37, 55},
{36, 54}, {33, 51}, {32, 50}, {4, 22}, {5, 23}, {8, 26}, {9, 27}, {12, 30}, {13,
31}, {64, 82}, {65, 83}, {68, 86}, {69, 87}, {72, 90}, {73, 91}, {76, 94}, {77,
95}, {1, 18}, {37, 54}, {73, 90}, {2, 20}, {43, 61}, {42, 60}, {35, 53}, {34,
52}, {3, 21}, {10, 28}, {11, 29}, {66, 84}, {67, 85}, {74, 92}, {75, 93}, {6,
24}, {39, 57}, {38, 56}, {7, 25}, {70, 88}, {71, 89}, {15, 16}, {47, 48}, {79,
80}, {14, 32}, {31, 49}, {30, 48}, {15, 33}, {78, 96}, {79, 97}, {16, 34}, {29,
47}, {28, 46}, {17, 35}, {20, 38}, {21, 39}, {24, 42}, {25, 43}, {80, 98}, {81,
99}, {84, 102}, {85, 103}, {88, 106}, {89, 107}, {18, 36}, {19, 37}, {26, 44},
{27, 45}, {82, 100}, {83, 101}, {90, 108}, {19, 36}, {91, 108}, {22, 40}, {23,
41}, {86, 104}, {87, 105}, {31, 32}, {95, 96}, {16, 94}, {17, 95}, {14, 92},
{15, 93}, {13, 91}, {1, 97}, {2, 98}, {3, 99}, {4, 100}, {5, 101}, {6, 102}, {7,
103}, {8, 104}, {9, 105}, {10, 106}, {11, 107}, {12, 108}, {46, 64}, {47, 65},
{62, 80}, {63, 81}, {18, 96}, {49, 67}, {48, 66}, {52, 70}, {53, 71}, {56, 74},
{57, 75}, {60, 78}, {61, 79}, {50, 68}, {51, 69}, {58, 76}, {59, 77}, {54, 72},
{55, 73}, {55, 72}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 18)(3, 17)(4, 16)(5, 15)(6, 14)(7, 13)(8, 12)(9, 11)(19, 97)(20, 96)(21,
95)(22, 94)(23, 93)(24, 92)(25, 91)(26, 108)(27, 107)(28, 106)(29, 105)(30,
104)(31, 103)(32, 102)(33, 101)(34, 100)(35, 99)(36, 98)(37, 79)(38, 78)(39,
77)(40, 76)(41, 75)(42, 74)(43, 73)(44, 90)(45, 89)(46, 88)(47, 87)(48, 86)(49,
85)(50, 84)(51, 83)(52, 82)(53, 81)(54, 80)(55, 61)(56, 60)(57, 59)(62, 72)(63,
71)(64, 70)(65, 69)(66, 68) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 19)(3, 37)(4, 55)(5, 73)(6, 91)(7, 13)(8, 31)(9, 49)(10, 67)(11, 85)(12,
103)(14, 25)(15, 43)(16, 61)(17, 79)(18, 97)(21, 38)(22, 56)(23, 74)(24, 92)(26,
32)(27, 50)(28, 68)(29, 86)(30, 104)(33, 44)(34, 62)(35, 80)(36, 98)(40, 57)(41,
75)(42, 93)(45, 51)(46, 69)(47, 87)(48, 105)(52, 63)(53, 81)(54, 99)(59, 76)(60,
94)(64, 70)(65, 88)(66, 106)(71, 82)(72, 100)(78, 95)(83, 89)(84, 107)(90,
101)(102, 108)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)(19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54)(55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)
C4[ 108, 4 ]
108
-1 2 18 19 97
-2 1 3 20 98
-3 99 2 4 21
-4 22 100 3 5
-5 23 101 4 6
-6 24 102 5 7
-7 25 103 6 8
-8 26 104 7 9
-9 27 105 8 10
-10 11 28 106 9
-11 12 29 107 10
-12 11 13 30 108
-13 12 14 91 31
-14 13 15 92 32
-15 33 14 16 93
-16 34 15 17 94
-17 35 16 18 95
-18 1 36 17 96
-19 1 36 37 20
-20 2 38 19 21
-21 22 3 39 20
-22 23 4 40 21
-23 22 24 5 41
-24 23 25 6 42
-25 24 26 7 43
-26 44 25 27 8
-27 45 26 28 9
-28 46 27 29 10
-29 11 47 28 30
-30 12 48 29 31
-31 13 49 30 32
-32 33 14 50 31
-33 34 15 51 32
-34 33 35 16 52
-35 34 36 17 53
-36 35 18 19 54
-37 55 38 19 54
-38 56 37 39 20
-39 57 38 40 21
-40 22 58 39 41
-41 23 59 40 42
-42 24 60 41 43
-43 44 25 61 42
-44 45 26 62 43
-45 44 46 27 63
-46 45 47 28 64
-47 46 48 29 65
-48 66 47 49 30
-49 67 48 50 31
-50 68 49 51 32
-51 33 69 50 52
-52 34 70 51 53
-53 35 71 52 54
-54 36 37 72 53
-55 56 37 72 73
-56 55 57 38 74
-57 56 58 39 75
-58 57 59 40 76
-59 77 58 60 41
-60 78 59 61 42
-61 79 60 62 43
-62 44 80 61 63
-63 45 81 62 64
-64 46 82 63 65
-65 66 47 83 64
-66 67 48 84 65
-67 66 68 49 85
-68 67 69 50 86
-69 68 70 51 87
-70 88 69 71 52
-71 89 70 72 53
-72 55 90 71 54
-73 55 90 91 74
-74 56 92 73 75
-75 57 93 74 76
-76 77 58 94 75
-77 78 59 95 76
-78 77 79 60 96
-79 78 80 61 97
-80 79 81 62 98
-81 99 80 82 63
-82 100 81 83 64
-83 101 82 84 65
-84 66 102 83 85
-85 67 103 84 86
-86 68 104 85 87
-87 88 69 105 86
-88 89 70 106 87
-89 88 90 71 107
-90 89 72 73 108
-91 13 92 73 108
-92 14 91 93 74
-93 15 92 94 75
-94 16 93 95 76
-95 77 17 94 96
-96 78 18 95 97
-97 1 79 96 98
-98 99 2 80 97
-99 100 3 81 98
-100 99 101 4 82
-101 100 102 5 83
-102 101 103 6 84
-103 102 104 7 85
-104 103 105 8 86
-105 104 106 9 87
-106 88 105 107 10
-107 11 89 106 108
-108 12 90 91 107
0