[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 6 ] =
PS(3,36;11).
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {36, 37}, {64, 75}, {68, 79}, {65, 76}, {67, 78}, {66, 77}, {69,
80}, {71, 82}, {70, 81}, {64, 89}, {70, 95}, {68, 93}, {66, 91}, {65, 90}, {72,
83}, {69, 94}, {67, 92}, {4, 39}, {20, 55}, {16, 51}, {12, 47}, {8, 43}, {24,
59}, {28, 63}, {2, 39}, {19, 54}, {18, 55}, {17, 52}, {16, 53}, {11, 46}, {10,
47}, {9, 44}, {8, 45}, {3, 38}, {24, 61}, {25, 60}, {26, 63}, {27, 62}, {1, 38},
{71, 96}, {18, 53}, {17, 54}, {10, 45}, {9, 46}, {2, 37}, {25, 62}, {26, 61},
{72, 97}, {3, 40}, {19, 56}, {7, 44}, {23, 60}, {4, 41}, {21, 56}, {20, 57}, {7,
42}, {6, 43}, {5, 40}, {22, 59}, {23, 58}, {5, 42}, {21, 58}, {6, 41}, {22, 57},
{11, 48}, {15, 52}, {12, 49}, {15, 50}, {14, 51}, {13, 48}, {13, 50}, {14, 49},
{39, 100}, {47, 108}, {43, 104}, {15, 74}, {46, 107}, {44, 105}, {38, 99}, {21,
80}, {23, 82}, {29, 88}, {31, 90}, {14, 73}, {45, 106}, {37, 98}, {22, 81}, {30,
89}, {1, 72}, {24, 83}, {28, 87}, {25, 84}, {42, 103}, {40, 101}, {27, 86}, {26,
85}, {41, 102}, {31, 80}, {24, 73}, {61, 108}, {59, 106}, {57, 104}, {55, 102},
{53, 100}, {51, 98}, {49, 96}, {26, 75}, {28, 77}, {30, 79}, {25, 74}, {58,
105}, {54, 101}, {50, 97}, {29, 78}, {2, 87}, {10, 95}, {8, 93}, {1, 86}, {60,
107}, {52, 99}, {9, 94}, {27, 76}, {3, 88}, {20, 79}, {16, 75}, {7, 92}, {27,
64}, {31, 68}, {4, 89}, {19, 78}, {17, 76}, {6, 91}, {28, 65}, {29, 64}, {30,
67}, {31, 66}, {5, 90}, {56, 103}, {18, 77}, {29, 66}, {30, 65}, {1, 96}, {13,
108}, {11, 106}, {9, 104}, {7, 102}, {5, 100}, {3, 98}, {2, 97}, {36, 71}, {10,
105}, {6, 101}, {32, 67}, {32, 69}, {35, 70}, {33, 68}, {34, 71}, {4, 99}, {63,
88}, {55, 80}, {12, 107}, {33, 70}, {34, 69}, {56, 81}, {62, 87}, {60, 85}, {58,
83}, {11, 96}, {61, 86}, {57, 82}, {35, 72}, {15, 100}, {12, 97}, {14, 99}, {8,
103}, {59, 84}, {48, 95}, {13, 98}, {32, 81}, {47, 94}, {45, 92}, {43, 90}, {41,
88}, {39, 86}, {37, 84}, {36, 85}, {34, 83}, {33, 82}, {46, 93}, {42, 89}, {38,
85}, {16, 101}, {63, 74}, {18, 103}, {17, 102}, {62, 73}, {44, 91}, {35, 84},
{48, 73}, {54, 79}, {52, 77}, {50, 75}, {19, 104}, {53, 78}, {49, 74}, {36, 95},
{23, 108}, {32, 91}, {20, 105}, {35, 94}, {22, 107}, {33, 92}, {21, 106}, {51,
76}, {40, 87}, {34, 93} }>;
(II) A more general form is to represent the graph as the orbit of {36, 37}
under the group generated by the following permutations:
a: (1, 37, 73)(2, 62, 86)(3, 51, 99)(4, 40, 76)(5, 65, 89)(6, 54, 102)(7, 43,
79)(8, 68, 92)(9, 57, 105)(10, 46, 82)(11, 71, 95)(12, 60, 108)(13, 49, 85)(14,
38, 98)(15, 63, 75)(16, 52, 88)(17, 41, 101)(18, 66, 78)(19, 55, 91)(20, 44,
104)(21, 69, 81)(22, 58, 94)(23, 47, 107)(24, 72, 84)(25, 61, 97)(26, 50,
74)(27, 39, 87)(28, 64, 100)(29, 53, 77)(30, 42, 90)(31, 67, 103)(32, 56,
80)(33, 45, 93)(34, 70, 106)(35, 59, 83)(36, 48, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)
c: (2, 36)(3, 35)(4, 34)(5, 33)(6, 32)(7, 31)(8, 30)(9, 29)(10, 28)(11, 27)(12,
26)(13, 25)(14, 24)(15, 23)(16, 22)(17, 21)(18, 20)(38, 72)(39, 71)(40, 70)(41,
69)(42, 68)(43, 67)(44, 66)(45, 65)(46, 64)(47, 63)(48, 62)(49, 61)(50, 60)(51,
59)(52, 58)(53, 57)(54, 56)(74, 108)(75, 107)(76, 106)(77, 105)(78, 104)(79,
103)(80, 102)(81, 101)(82, 100)(83, 99)(84, 98)(85, 97)(86, 96)(87, 95)(88,
94)(89, 93)(90, 92)
C4[ 108, 6 ]
108
-1 38 72 96 86
-2 37 39 97 87
-3 88 38 40 98
-4 99 89 39 41
-5 100 90 40 42
-6 101 91 41 43
-7 44 102 92 42
-8 45 103 93 43
-9 44 46 104 94
-10 45 47 105 95
-11 46 48 106 96
-12 47 49 107 97
-13 48 50 108 98
-14 99 49 51 73
-15 100 50 52 74
-16 101 51 53 75
-17 102 52 54 76
-18 55 77 103 53
-19 56 78 104 54
-20 55 57 79 105
-21 56 58 80 106
-22 57 59 81 107
-23 58 60 82 108
-24 59 61 83 73
-25 60 62 84 74
-26 61 63 85 75
-27 62 64 86 76
-28 77 63 65 87
-29 66 88 78 64
-30 67 89 79 65
-31 66 68 90 80
-32 67 69 91 81
-33 68 70 92 82
-34 69 71 93 83
-35 70 72 94 84
-36 37 71 95 85
-37 2 36 84 98
-38 99 1 3 85
-39 100 2 4 86
-40 101 3 5 87
-41 88 102 4 6
-42 89 103 5 7
-43 90 104 6 8
-44 91 105 7 9
-45 92 106 8 10
-46 11 93 107 9
-47 12 94 108 10
-48 11 13 73 95
-49 12 14 74 96
-50 13 15 75 97
-51 14 16 76 98
-52 77 99 15 17
-53 78 100 16 18
-54 79 101 17 19
-55 80 102 18 20
-56 81 103 19 21
-57 22 82 104 20
-58 23 83 105 21
-59 22 24 84 106
-60 23 25 85 107
-61 24 26 86 108
-62 25 27 73 87
-63 88 26 28 74
-64 89 27 29 75
-65 90 28 30 76
-66 77 91 29 31
-67 78 92 30 32
-68 33 79 93 31
-69 34 80 94 32
-70 33 35 81 95
-71 34 36 82 96
-72 1 35 83 97
-73 24 14 48 62
-74 25 15 49 63
-75 26 16 50 64
-76 27 17 51 65
-77 66 28 18 52
-78 67 29 19 53
-79 68 30 20 54
-80 55 69 31 21
-81 22 56 70 32
-82 33 23 57 71
-83 34 24 58 72
-84 35 25 37 59
-85 36 26 38 60
-86 1 27 39 61
-87 2 28 40 62
-88 3 29 41 63
-89 4 30 42 64
-90 5 31 43 65
-91 44 66 6 32
-92 33 45 67 7
-93 34 46 68 8
-94 35 47 69 9
-95 36 48 70 10
-96 11 1 49 71
-97 12 2 50 72
-98 13 3 37 51
-99 14 4 38 52
-100 15 5 39 53
-101 16 6 40 54
-102 55 17 7 41
-103 56 18 8 42
-104 57 19 9 43
-105 44 58 20 10
-106 11 45 59 21
-107 22 12 46 60
-108 23 13 47 61
0