[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 7 ] =
PS(6,36;5).
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {36, 39}, {35, 38}, {50, 55}, {88, 94}, {89, 95}, {34, 37}, {64,
73}, {70, 79}, {68, 77}, {66, 75}, {64, 74}, {87, 93}, {86, 92}, {69, 79}, {68,
78}, {65, 75}, {51, 56}, {84, 95}, {80, 91}, {69, 78}, {65, 74}, {48, 60}, {49,
61}, {50, 62}, {51, 63}, {52, 57}, {83, 94}, {81, 92}, {54, 59}, {66, 76}, {85,
91}, {67, 77}, {53, 58}, {82, 93}, {67, 76}, {32, 48}, {33, 49}, {34, 50}, {35,
51}, {36, 52}, {2, 19}, {14, 31}, {12, 29}, {10, 27}, {8, 25}, {6, 23}, {4, 21},
{1, 19}, {13, 31}, {12, 30}, {9, 27}, {8, 26}, {5, 23}, {4, 22}, {5, 22}, {13,
30}, {9, 26}, {44, 56}, {45, 57}, {46, 58}, {47, 59}, {32, 53}, {2, 20}, {71,
81}, {70, 80}, {11, 29}, {10, 28}, {3, 21}, {3, 20}, {71, 80}, {11, 28}, {33,
54}, {40, 63}, {37, 60}, {72, 81}, {39, 62}, {72, 82}, {38, 61}, {43, 55}, {6,
24}, {7, 25}, {7, 24}, {20, 54}, {75, 104}, {79, 108}, {1, 36}, {78, 107}, {76,
105}, {19, 53}, {77, 106}, {73, 97}, {79, 103}, {78, 102}, {77, 101}, {76, 100},
{75, 99}, {74, 98}, {27, 48}, {31, 52}, {28, 49}, {74, 103}, {30, 51}, {14, 32},
{15, 33}, {15, 32}, {73, 102}, {29, 50}, {21, 37}, {31, 47}, {30, 46}, {29, 45},
{28, 44}, {27, 43}, {26, 42}, {25, 41}, {24, 40}, {23, 39}, {22, 38}, {16, 33},
{18, 35}, {16, 34}, {17, 35}, {17, 34}, {24, 45}, {87, 98}, {85, 96}, {26, 47},
{18, 36}, {25, 46}, {86, 97}, {80, 104}, {84, 108}, {83, 107}, {82, 106}, {81,
105}, {90, 96}, {19, 40}, {88, 99}, {23, 44}, {20, 41}, {89, 100}, {22, 43},
{21, 42}, {90, 101}, {16, 91}, {17, 92}, {18, 93}, {8, 94}, {9, 95}, {6, 92},
{7, 93}, {2, 95}, {5, 91}, {1, 94}, {38, 68}, {39, 69}, {42, 72}, {3, 96}, {15,
108}, {11, 104}, {7, 100}, {55, 83}, {60, 88}, {61, 89}, {62, 90}, {4, 97}, {14,
107}, {12, 105}, {6, 99}, {55, 82}, {61, 88}, {63, 90}, {37, 67}, {5, 98}, {13,
106}, {62, 89}, {1, 105}, {4, 108}, {3, 107}, {2, 106}, {41, 64}, {43, 66}, {45,
68}, {47, 70}, {10, 96}, {15, 101}, {14, 100}, {11, 97}, {42, 65}, {46, 69},
{56, 83}, {60, 87}, {56, 84}, {57, 85}, {58, 86}, {59, 87}, {8, 101}, {10, 103},
{57, 84}, {59, 86}, {12, 98}, {13, 99}, {40, 70}, {41, 71}, {9, 102}, {44, 67},
{58, 85}, {52, 64}, {53, 65}, {54, 66}, {16, 102}, {17, 103}, {63, 73}, {48,
71}, {49, 72}, {18, 104} }>;
(II) A more general form is to represent the graph as the orbit of {36, 39}
under the group generated by the following permutations:
a: (2, 18)(3, 17)(4, 16)(5, 15)(6, 14)(7, 13)(8, 12)(9, 11)(19, 36)(20, 35)(21,
34)(22, 33)(23, 32)(24, 31)(25, 30)(26, 29)(27, 28)(38, 54)(39, 53)(40, 52)(41,
51)(42, 50)(43, 49)(44, 48)(45, 47)(55, 72)(56, 71)(57, 70)(58, 69)(59, 68)(60,
67)(61, 66)(62, 65)(63, 64)(74, 90)(75, 89)(76, 88)(77, 87)(78, 86)(79, 85)(80,
84)(81, 83)(91, 108)(92, 107)(93, 106)(94, 105)(95, 104)(96, 103)(97, 102)(98,
101)(99, 100) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)(19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54)(55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)
c: (1, 19, 53, 65, 75, 99, 13, 31, 47, 59, 87, 93, 7, 25, 41, 71, 81, 105)(2,
32, 42, 66, 88, 106, 14, 26, 54, 60, 82, 100, 8, 20, 48, 72, 76, 94)(3, 27, 49,
67, 83, 95, 15, 21, 43, 61, 77, 107, 9, 33, 37, 55, 89, 101)(4, 22, 38, 68, 78,
102, 16, 34, 50, 62, 90, 96, 10, 28, 44, 56, 84, 108)(5, 35, 45, 69, 73, 91, 17,
29, 39, 63, 85, 103, 11, 23, 51, 57, 79, 97)(6, 30, 52, 70, 86, 98, 18, 24, 46,
64, 80, 92, 12, 36, 40, 58, 74, 104)
C4[ 108, 7 ]
108
-1 36 94 105 19
-2 95 106 19 20
-3 96 107 20 21
-4 22 97 108 21
-5 22 23 91 98
-6 99 23 24 92
-7 100 24 25 93
-8 101 25 26 94
-9 102 26 27 95
-10 103 27 28 96
-11 104 28 29 97
-12 105 29 30 98
-13 99 106 30 31
-14 100 107 31 32
-15 33 101 108 32
-16 33 34 91 102
-17 34 35 92 103
-18 35 36 93 104
-19 1 2 40 53
-20 2 3 41 54
-21 3 4 37 42
-22 4 5 38 43
-23 44 5 6 39
-24 45 6 7 40
-25 46 7 8 41
-26 47 8 9 42
-27 48 9 10 43
-28 11 44 49 10
-29 11 12 45 50
-30 12 13 46 51
-31 13 14 47 52
-32 14 15 48 53
-33 15 16 49 54
-34 37 16 17 50
-35 38 17 18 51
-36 1 39 18 52
-37 34 67 60 21
-38 22 35 68 61
-39 23 36 69 62
-40 24 70 19 63
-41 25 71 20 64
-42 26 72 21 65
-43 22 55 66 27
-44 23 56 67 28
-45 24 57 68 29
-46 25 58 69 30
-47 26 59 70 31
-48 27 60 71 32
-49 33 28 61 72
-50 55 34 29 62
-51 56 35 30 63
-52 57 36 31 64
-53 58 19 32 65
-54 33 66 59 20
-55 82 50 83 43
-56 44 83 51 84
-57 45 84 52 85
-58 46 85 53 86
-59 47 86 54 87
-60 88 37 48 87
-61 88 89 38 49
-62 89 90 39 50
-63 90 40 51 73
-64 73 41 52 74
-65 74 42 53 75
-66 75 43 54 76
-67 44 77 37 76
-68 77 45 78 38
-69 78 46 79 39
-70 79 47 80 40
-71 80 48 81 41
-72 81 49 82 42
-73 102 63 64 97
-74 103 64 65 98
-75 66 99 104 65
-76 66 67 100 105
-77 67 68 101 106
-78 68 69 102 107
-79 69 70 103 108
-80 91 70 71 104
-81 92 71 72 105
-82 55 93 72 106
-83 55 56 94 107
-84 56 57 95 108
-85 57 58 91 96
-86 58 59 92 97
-87 59 60 93 98
-88 99 60 61 94
-89 100 61 62 95
-90 101 62 63 96
-91 80 5 16 85
-92 81 6 17 86
-93 82 7 18 87
-94 88 1 83 8
-95 89 2 84 9
-96 90 3 85 10
-97 11 4 73 86
-98 12 5 74 87
-99 88 13 6 75
-100 89 14 7 76
-101 77 90 15 8
-102 78 16 73 9
-103 79 17 74 10
-104 11 80 18 75
-105 1 12 81 76
-106 77 2 13 82
-107 78 3 14 83
-108 79 4 15 84
0