[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 9 ] =
Pr_36(1,25,29,17).
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {2, 3}, {24, 25}, {22, 23}, {20, 21}, {18, 19}, {16, 17}, {14,
15}, {12, 13}, {10, 11}, {8, 9}, {6, 7}, {4, 5}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {1, 2}, {21, 22}, {17, 18}, {13, 14}, {9, 10}, {5, 6}, {25,
26}, {29, 30}, {33, 34}, {3, 4}, {19, 20}, {11, 12}, {27, 28}, {35, 36}, {32,
43}, {36, 47}, {33, 44}, {35, 46}, {7, 8}, {23, 24}, {34, 45}, {74, 91}, {78,
95}, {76, 93}, {73, 90}, {77, 94}, {76, 95}, {73, 92}, {75, 94}, {74, 93}, {75,
92}, {64, 93}, {66, 95}, {15, 16}, {65, 94}, {67, 96}, {71, 100}, {1, 37}, {72,
108}, {67, 103}, {66, 102}, {65, 101}, {64, 100}, {24, 60}, {19, 55}, {18, 54},
{17, 53}, {16, 52}, {11, 47}, {10, 46}, {9, 45}, {8, 44}, {3, 39}, {2, 38}, {25,
61}, {26, 62}, {27, 63}, {1, 36}, {70, 99}, {68, 97}, {69, 98}, {4, 40}, {71,
107}, {70, 106}, {69, 105}, {68, 104}, {23, 59}, {22, 58}, {21, 57}, {20, 56},
{7, 43}, {6, 42}, {5, 41}, {72, 101}, {79, 98}, {77, 96}, {16, 63}, {79, 96},
{78, 97}, {1, 48}, {90, 107}, {88, 105}, {86, 103}, {84, 101}, {82, 99}, {80,
97}, {15, 62}, {13, 60}, {11, 58}, {9, 56}, {7, 54}, {5, 52}, {3, 50}, {2, 49},
{89, 106}, {88, 107}, {85, 102}, {84, 103}, {81, 98}, {80, 99}, {14, 61}, {10,
57}, {6, 53}, {29, 40}, {89, 108}, {83, 102}, {81, 100}, {31, 42}, {4, 51}, {91,
108}, {83, 100}, {82, 101}, {12, 59}, {30, 41}, {28, 39}, {12, 48}, {15, 51},
{14, 50}, {13, 49}, {27, 38}, {87, 106}, {85, 104}, {8, 55}, {87, 104}, {86,
105}, {26, 37}, {31, 32}, {38, 103}, {40, 105}, {42, 107}, {37, 102}, {41, 106},
{43, 108}, {39, 104}, {17, 64}, {23, 70}, {21, 68}, {19, 66}, {25, 72}, {18,
65}, {22, 69}, {20, 67}, {28, 64}, {63, 99}, {62, 98}, {61, 97}, {60, 96}, {29,
65}, {30, 66}, {31, 67}, {24, 71}, {47, 76}, {63, 92}, {59, 88}, {55, 84}, {51,
80}, {32, 68}, {59, 95}, {58, 94}, {57, 93}, {56, 92}, {51, 87}, {50, 86}, {33,
69}, {34, 70}, {35, 71}, {40, 76}, {41, 77}, {42, 78}, {43, 79}, {48, 84}, {49,
85}, {44, 73}, {62, 91}, {60, 89}, {54, 83}, {52, 81}, {46, 75}, {45, 74}, {61,
90}, {53, 82}, {36, 72}, {55, 91}, {54, 90}, {53, 89}, {52, 88}, {37, 73}, {38,
74}, {39, 75}, {56, 85}, {58, 87}, {57, 86}, {44, 80}, {45, 81}, {46, 82}, {47,
83}, {48, 77}, {50, 79}, {49, 78} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 36)(3, 35)(4, 34)(5, 33)(6, 32)(7, 31)(8, 30)(9, 29)(10, 28)(11, 27)(12,
26)(13, 25)(14, 24)(15, 23)(16, 22)(17, 21)(18, 20)(37, 48)(38, 47)(39, 46)(40,
45)(41, 44)(42, 43)(49, 72)(50, 71)(51, 70)(52, 69)(53, 68)(54, 67)(55, 66)(56,
65)(57, 64)(58, 63)(59, 62)(60, 61)(73, 77)(74, 76)(78, 108)(79, 107)(80,
106)(81, 105)(82, 104)(83, 103)(84, 102)(85, 101)(86, 100)(87, 99)(88, 98)(89,
97)(90, 96)(91, 95)(92, 94) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 37)(3, 73)(4, 44)(5, 33)(6, 69)(7, 105)(8, 40)(9, 29)(10, 65)(11,
101)(12, 72)(13, 25)(14, 61)(15, 97)(16, 68)(17, 21)(18, 57)(19, 93)(20, 64)(22,
53)(23, 89)(24, 60)(26, 49)(27, 85)(28, 56)(30, 45)(31, 81)(32, 52)(34, 41)(35,
77)(36, 48)(38, 102)(39, 92)(42, 98)(43, 88)(46, 94)(47, 84)(50, 90)(51, 80)(54,
86)(55, 76)(58, 82)(59, 108)(62, 78)(63, 104)(66, 74)(67, 100)(70, 106)(71,
96)(79, 107)(83, 103)(87, 99)(91, 95)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)
C4[ 108, 9 ]
108
-1 2 36 37 48
-2 1 3 38 49
-3 2 4 39 50
-4 3 5 40 51
-5 4 6 41 52
-6 5 7 42 53
-7 6 8 43 54
-8 44 55 7 9
-9 45 56 8 10
-10 11 46 57 9
-11 12 47 58 10
-12 11 13 48 59
-13 12 14 49 60
-14 13 15 50 61
-15 14 16 51 62
-16 15 17 52 63
-17 16 18 53 64
-18 17 19 54 65
-19 55 66 18 20
-20 56 67 19 21
-21 22 57 68 20
-22 23 58 69 21
-23 22 24 59 70
-24 23 25 60 71
-25 24 26 61 72
-26 25 37 27 62
-27 26 38 28 63
-28 27 39 29 64
-29 28 40 30 65
-30 66 29 41 31
-31 67 30 42 32
-32 33 68 31 43
-33 44 34 69 32
-34 33 45 35 70
-35 34 46 36 71
-36 1 35 47 72
-37 1 102 26 73
-38 2 103 27 74
-39 3 104 28 75
-40 4 105 29 76
-41 77 5 106 30
-42 78 6 107 31
-43 79 7 108 32
-44 33 80 73 8
-45 34 81 74 9
-46 35 82 75 10
-47 11 36 83 76
-48 77 1 12 84
-49 78 2 13 85
-50 79 3 14 86
-51 80 4 15 87
-52 88 81 5 16
-53 89 82 6 17
-54 90 83 7 18
-55 91 84 8 19
-56 92 85 9 20
-57 93 86 10 21
-58 11 22 94 87
-59 88 12 23 95
-60 89 13 24 96
-61 90 14 25 97
-62 91 15 26 98
-63 99 92 16 27
-64 100 93 17 28
-65 101 94 18 29
-66 102 95 19 30
-67 103 96 20 31
-68 104 97 21 32
-69 22 33 105 98
-70 99 23 34 106
-71 100 24 35 107
-72 101 25 36 108
-73 44 90 37 92
-74 45 91 38 93
-75 46 92 39 94
-76 47 93 40 95
-77 48 94 41 96
-78 49 95 42 97
-79 50 96 43 98
-80 44 99 51 97
-81 45 100 52 98
-82 99 46 101 53
-83 100 47 102 54
-84 55 101 48 103
-85 56 102 49 104
-86 57 103 50 105
-87 58 104 51 106
-88 59 105 52 107
-89 60 106 53 108
-90 61 73 107 54
-91 55 62 74 108
-92 56 73 63 75
-93 57 74 64 76
-94 77 58 75 65
-95 66 78 59 76
-96 77 67 79 60
-97 78 68 80 61
-98 79 69 81 62
-99 80 70 82 63
-100 81 71 83 64
-101 82 72 84 65
-102 66 37 83 85
-103 67 38 84 86
-104 68 39 85 87
-105 88 69 40 86
-106 89 70 41 87
-107 88 90 71 42
-108 89 91 72 43
0