C4graphGraph forms for C4 [ 108, 10 ] = CPM(3,2,6,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 108, 10 ] = CPM(3,2,6,1).

(I) Following is a form readable by MAGMA:

g:=Graph<108|{ {24, 25}, {86, 87}, {30, 31}, {21, 23}, {61, 63}, {36, 39}, {42, 46}, {89, 93}, {88, 92}, {80, 84}, {98, 103}, {35, 37}, {97, 103}, {72, 78}, {75, 77}, {6, 14}, {86, 94}, {49, 56}, {7, 13}, {38, 44}, {33, 43}, {38, 45}, {66, 73}, {3, 15}, {23, 26}, {35, 45}, {100, 106}, {68, 74}, {39, 40}, {100, 107}, {72, 88}, {6, 23}, {44, 61}, {64, 81}, {6, 20}, {67, 81}, {76, 94}, {32, 52}, {43, 63}, {38, 50}, {33, 53}, {8, 30}, {65, 87}, {68, 82}, {67, 91}, {77, 85}, {12, 21}, {35, 58}, {32, 58}, {2, 25}, {8, 22}, {39, 56}, {18, 50}, {31, 63}, {28, 62}, {69, 103}, {24, 59}, {67, 96}, {11, 47}, {28, 56}, {16, 52}, {79, 107}, {12, 41}, {70, 99}, {14, 40}, {66, 100}, {20, 51}, {23, 48}, {5, 45}, {7, 47}, {3, 42}, {29, 55}, {2, 41}, {30, 53}, {26, 49}, {9, 37}, {16, 62}, {1, 46}, {5, 42}, {17, 33}, {29, 45}, {20, 36}, {18, 34}, {88, 105}, {16, 36}, {81, 101}, {31, 42}, {85, 96}, {13, 59}, {22, 46}, {3, 58}, {82, 107}, {13, 55}, {93, 102}, {10, 54}, {4, 57}, {24, 37}, {84, 105}, {5, 59}, {86, 104}, {13, 51}, {9, 55}, {84, 106}, {29, 34}, {18, 83}, {29, 92}, {17, 83}, {15, 76}, {34, 97}, {2, 70}, {4, 64}, {4, 65}, {19, 86}, {6, 64}, {16, 87}, {7, 79}, {24, 80}, {19, 90}, {9, 66}, {41, 98}, {10, 65}, {7, 73}, {19, 93}, {39, 104}, {18, 66}, {25, 73}, {20, 68}, {48, 97}, {51, 97}, {1, 82}, {3, 80}, {11, 95}, {28, 72}, {1, 84}, {26, 79}, {15, 90}, {14, 91}, {57, 108}, {11, 93}, {15, 88}, {49, 102}, {19, 75}, {31, 71}, {59, 99}, {54, 108}, {4, 95}, {30, 69}, {8, 83}, {62, 101}, {22, 74}, {25, 69}, {27, 70}, {54, 104}, {21, 74}, {9, 105}, {12, 108}, {57, 89}, {38, 71}, {61, 92}, {1, 99}, {44, 78}, {14, 108}, {8, 106}, {5, 103}, {56, 90}, {40, 76}, {53, 80}, {55, 82}, {60, 89}, {40, 78}, {32, 71}, {50, 85}, {57, 94}, {2, 106}, {34, 74}, {10, 98}, {10, 99}, {47, 70}, {12, 102}, {49, 91}, {35, 72}, {36, 79}, {60, 81}, {11, 101}, {61, 83}, {44, 67}, {48, 95}, {27, 107}, {43, 91}, {37, 85}, {17, 96}, {21, 100}, {58, 75}, {60, 77}, {43, 89}, {46, 92}, {51, 65}, {54, 68}, {27, 104}, {63, 76}, {22, 98}, {52, 64}, {62, 75}, {41, 95}, {50, 69}, {17, 105}, {47, 87}, {53, 77}, {48, 73}, {52, 78}, {33, 90}, {60, 71}, {28, 96}, {27, 102}, {32, 94}, {26, 101} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 5, 74, 9)(3, 54, 88, 27)(4, 44, 26, 77)(6, 96, 11, 71)(7, 30, 51, 83)(8, 13)(10, 92, 107, 80)(12, 35)(14, 28, 93, 32)(15, 104)(16, 43)(17, 47, 31, 20)(18, 73, 69, 97)(19, 94, 40, 56)(21, 37, 41, 45)(22, 55, 106, 59)(23, 85, 95, 38)(24, 98, 29, 100)(25, 103, 34, 66)(33, 87, 63, 36)(39, 90, 86, 76)(42, 68, 105, 70)(46, 82, 84, 99)(48, 50)(49, 75, 57, 78)(52, 91, 62, 89)(53, 65, 61, 79)(58, 108, 72, 102)(60, 64, 67, 101)
b: (1, 2, 103, 13, 66, 74)(3, 11, 38, 36, 17, 108)(4, 35, 26, 61, 104, 53)(5, 7, 18, 68, 84, 41)(6, 88, 102, 31, 87, 85)(8, 10, 24, 48, 29, 107)(9, 21, 46, 70, 69, 51)(12, 42, 47, 50, 20, 105)(14, 15, 93, 71, 16, 96)(19, 60, 52, 28, 91, 76)(22, 99, 25, 97, 55, 100)(23, 92, 27, 30, 65, 37)(32, 62, 67, 40, 90, 89)(33, 57, 58, 101, 44, 39)(34, 82, 106, 98, 59, 73)(43, 94, 75, 81, 78, 56)(45, 79, 83, 54, 80, 95)(49, 63, 86, 77, 64, 72)
c: (2, 98)(4, 11)(5, 24)(6, 26)(7, 51)(9, 29)(10, 70)(14, 49)(17, 61)(19, 94)(20, 79)(22, 106)(25, 103)(27, 54)(28, 78)(31, 53)(32, 75)(33, 63)(34, 66)(37, 45)(38, 85)(40, 56)(42, 80)(44, 96)(46, 84)(47, 65)(52, 62)(57, 93)(64, 101)(68, 107)(71, 77)(73, 97)(74, 100)(76, 90)(92, 105)(102, 108)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 108, 10 ]
108
-1 99 46 82 84
-2 25 70 106 41
-3 58 80 15 42
-4 57 95 64 65
-5 45 59 103 42
-6 23 14 20 64
-7 13 79 47 73
-8 22 83 106 30
-9 55 66 37 105
-10 99 54 65 98
-11 101 47 93 95
-12 102 41 108 21
-13 55 59 7 51
-14 91 6 40 108
-15 88 90 3 76
-16 36 62 52 87
-17 33 83 105 96
-18 66 34 50 83
-19 90 93 75 86
-20 68 36 6 51
-21 12 23 100 74
-22 46 8 74 98
-23 26 48 6 21
-24 25 80 37 59
-25 2 24 69 73
-26 23 79 101 49
-27 102 70 104 107
-28 56 72 62 96
-29 55 34 45 92
-30 69 8 31 53
-31 71 30 63 42
-32 58 71 94 52
-33 90 17 53 43
-34 18 29 74 97
-35 45 58 37 72
-36 79 16 39 20
-37 24 35 85 9
-38 44 45 71 50
-39 56 36 104 40
-40 78 14 39 76
-41 12 2 95 98
-42 46 3 5 31
-43 33 89 91 63
-44 67 78 38 61
-45 35 5 38 29
-46 22 1 92 42
-47 11 70 7 87
-48 23 73 95 97
-49 56 91 102 26
-50 69 38 18 85
-51 13 20 97 65
-52 78 16 64 32
-53 33 77 80 30
-54 68 104 108 10
-55 13 82 29 9
-56 90 49 28 39
-57 89 4 94 108
-58 35 3 75 32
-59 99 13 24 5
-60 77 89 81 71
-61 44 92 83 63
-62 101 16 28 75
-63 61 31 43 76
-64 4 81 6 52
-65 4 51 10 87
-66 100 18 73 9
-67 44 91 81 96
-68 82 74 20 54
-69 25 103 50 30
-70 99 2 47 27
-71 38 60 31 32
-72 88 78 35 28
-73 66 25 48 7
-74 22 34 68 21
-75 77 58 62 19
-76 15 94 40 63
-77 60 85 53 75
-78 44 72 40 52
-79 36 26 7 107
-80 24 3 84 53
-81 67 101 60 64
-82 55 1 68 107
-83 17 61 18 8
-84 1 80 105 106
-85 77 37 50 96
-86 104 94 19 87
-87 47 16 86 65
-88 15 92 72 105
-89 57 60 93 43
-90 33 56 15 19
-91 67 14 49 43
-92 88 46 61 29
-93 11 89 102 19
-94 57 86 32 76
-95 11 4 48 41
-96 67 17 28 85
-97 34 48 103 51
-98 22 103 41 10
-99 1 59 70 10
-100 66 106 107 21
-101 11 26 81 62
-102 12 27 49 93
-103 69 5 97 98
-104 27 39 86 54
-105 88 17 84 9
-106 100 2 84 8
-107 100 79 27 82
-108 12 57 14 54
0

**************