[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 108, 10 ]. See Glossary for some
detail.
CPM( 3, 2, 6, 1) = CPM( 6, 2, 3, 1) = CPM( 6, 2, 6, 1)
= AMC( 12, 3, [ 0. 1: 2. 0]) = UG(ATD[108, 11]) = UG(ATD[108, 12])
= UG(ATD[108, 13]) = ATD[ 9, 1]#DCyc[ 6] = ATD[ 9, 1]#ATD[ 18, 1]
= ATD[ 18, 1]#DCyc[ 3] = ATD[ 18, 1]#DCyc[ 6] = ATD[ 18, 1]#ATD[ 18,
1]
= UG(Rmap(216, 14) { 12, 4| 6}_ 12) = UG(Rmap(216, 15) { 12, 4| 6}_ 12) =
MG(Rmap(108, 27) { 6, 12| 6}_ 12)
= DG(Rmap(108, 27) { 6, 12| 6}_ 12) = MG(Rmap(108, 28) { 6, 12| 6}_ 12) =
DG(Rmap(108, 28) { 6, 12| 6}_ 12)
= DG(Rmap(108, 35) { 12, 6| 6}_ 12) = DG(Rmap(108, 38) { 12, 6| 6}_ 12) =
DG(Rmap( 54, 27) { 6, 12| 6}_ 12)
= BGCG(DW( 3, 3), C_ 6, 1) = BGCG(DW( 6, 3), C_ 3, {1, 2}) = BGCG(MC3( 6,
9, 1, 6, 2, 0, 1); K1;{4, 5})
= AT[108, 4]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | 0 | - | - | - | 0 |
2 | 0 | - | - | - | - | 2 | - | 2 4 | - |
3 | 0 | - | - | - | 9 | - | - | 0 | 1 |
4 | - | - | - | 1 11 | - | 11 | 0 | - | - |
5 | 0 | - | 3 | - | 1 11 | - | - | - | - |
6 | - | 10 | - | 1 | - | - | 4 | - | 2 |
7 | - | - | - | 0 | - | 8 | - | 0 | 9 |
8 | - | 8 10 | 0 | - | - | - | 0 | - | - |
9 | 0 | - | 11 | - | - | 10 | 3 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | - | 0 | 0 | - | 0 |
2 | - | - | 1 | - | 0 | 9 | - | 0 | - |
3 | 0 | 11 | - | - | - | 9 | - | - | 1 |
4 | - | - | - | - | 11 | - | 6 | 7 | 10 |
5 | - | 0 | - | 1 | - | - | - | 11 | 10 |
6 | 0 | 3 | 3 | - | - | - | 11 | - | - |
7 | 0 | - | - | 6 | - | 1 | - | 0 | - |
8 | - | 0 | - | 5 | 1 | - | 0 | - | - |
9 | 0 | - | 11 | 2 | 2 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | 0 | 0 | - | 0 2 |
2 | - | - | 0 2 | - | 0 | - | 3 | - | - |
3 | - | 0 10 | - | 3 | - | - | - | - | 0 |
4 | - | - | 9 | - | - | - | - | 6 8 | 0 |
5 | - | 0 | - | - | 1 11 | - | - | 8 | - |
6 | 0 | - | - | - | - | 1 11 | - | 11 | - |
7 | 0 | 9 | - | - | - | - | 1 11 | - | - |
8 | - | - | - | 4 6 | 4 | 1 | - | - | - |
9 | 0 10 | - | 0 | 0 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | 0 | - | 0 | 0 |
2 | 0 | - | - | 4 | - | - | 4 | - | 1 |
3 | - | - | - | 2 | 0 | 3 | - | 7 | - |
4 | - | 8 | 10 | - | - | - | 1 | 0 | - |
5 | - | - | 0 | - | - | 8 | 11 | - | 0 |
6 | 0 | - | 9 | - | 4 | - | - | 7 | - |
7 | - | 8 | - | 11 | 1 | - | - | - | 0 |
8 | 0 | - | 5 | 0 | - | 5 | - | - | - |
9 | 0 | 11 | - | - | 0 | - | 0 | - | - |