C4graphConstructions for C4[ 108, 10 ] = CPM(3,2,6,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 108, 10 ]. See Glossary for some detail.

CPM( 3, 2, 6, 1) = CPM( 6, 2, 3, 1) = CPM( 6, 2, 6, 1)

      = AMC( 12, 3, [ 0. 1: 2. 0]) = UG(ATD[108, 11]) = UG(ATD[108, 12])

      = UG(ATD[108, 13]) = ATD[ 9, 1]#DCyc[ 6] = ATD[ 9, 1]#ATD[ 18, 1]

      = ATD[ 18, 1]#DCyc[ 3] = ATD[ 18, 1]#DCyc[ 6] = ATD[ 18, 1]#ATD[ 18, 1]

      = UG(Rmap(216, 14) { 12, 4| 6}_ 12) = UG(Rmap(216, 15) { 12, 4| 6}_ 12) = MG(Rmap(108, 27) { 6, 12| 6}_ 12)

      = DG(Rmap(108, 27) { 6, 12| 6}_ 12) = MG(Rmap(108, 28) { 6, 12| 6}_ 12) = DG(Rmap(108, 28) { 6, 12| 6}_ 12)

      = DG(Rmap(108, 35) { 12, 6| 6}_ 12) = DG(Rmap(108, 38) { 12, 6| 6}_ 12) = DG(Rmap( 54, 27) { 6, 12| 6}_ 12)

      = BGCG(DW( 3, 3), C_ 6, 1) = BGCG(DW( 6, 3), C_ 3, {1, 2}) = BGCG(MC3( 6, 9, 1, 6, 2, 0, 1); K1;{4, 5})

      = AT[108, 4]

Cyclic coverings

mod 12:
123456789
1 - 0 0 - 0 - - - 0
2 0 - - - - 2 - 2 4 -
3 0 - - - 9 - - 0 1
4 - - - 1 11 - 11 0 - -
5 0 - 3 - 1 11 - - - -
6 - 10 - 1 - - 4 - 2
7 - - - 0 - 8 - 0 9
8 - 8 10 0 - - - 0 - -
9 0 - 11 - - 10 3 - -

mod 12:
123456789
1 - - 0 - - 0 0 - 0
2 - - 1 - 0 9 - 0 -
3 0 11 - - - 9 - - 1
4 - - - - 11 - 6 7 10
5 - 0 - 1 - - - 11 10
6 0 3 3 - - - 11 - -
7 0 - - 6 - 1 - 0 -
8 - 0 - 5 1 - 0 - -
9 0 - 11 2 2 - - - -

mod 12:
123456789
1 - - - - - 0 0 - 0 2
2 - - 0 2 - 0 - 3 - -
3 - 0 10 - 3 - - - - 0
4 - - 9 - - - - 6 8 0
5 - 0 - - 1 11 - - 8 -
6 0 - - - - 1 11 - 11 -
7 0 9 - - - - 1 11 - -
8 - - - 4 6 4 1 - - -
9 0 10 - 0 0 - - - - -

mod 12:
123456789
1 - 0 - - - 0 - 0 0
2 0 - - 4 - - 4 - 1
3 - - - 2 0 3 - 7 -
4 - 8 10 - - - 1 0 -
5 - - 0 - - 8 11 - 0
6 0 - 9 - 4 - - 7 -
7 - 8 - 11 1 - - - 0
8 0 - 5 0 - 5 - - -
9 0 11 - - 0 - 0 - -