[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 108, 11 ]. See Glossary for some
detail.
AMC( 12, 3, [ 0. 1: 2. 2]) = UG(ATD[108, 37]) = UG(ATD[108, 38])
= UG(ATD[108, 39]) = MG(Rmap(108, 26) { 6, 12| 6}_ 12) = DG(Rmap(108, 26) {
6, 12| 6}_ 12)
= MG(Rmap(108, 30) { 6, 12| 6}_ 12) = DG(Rmap(108, 30) { 6, 12| 6}_ 12) =
DG(Rmap(108, 34) { 12, 6| 6}_ 12)
= DG(Rmap(108, 36) { 12, 6| 6}_ 12) = HC(Rmap( 27, 3) { 3, 6| 6}_ 6) =
BGCG(AMC( 6, 3, [ 0. 1: 2. 2]); K1;{3, 5})
= AT[108, 11]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 0 | 0 | - | 4 |
3 | - | - | - | 0 | 0 | - | 4 | 8 | - |
4 | - | 0 | 0 | - | - | - | 1 9 | - | - |
5 | 0 | - | 0 | - | - | - | - | 5 9 | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 9 |
7 | - | 0 | 8 | 3 11 | - | - | - | - | - |
8 | 0 | - | 4 | - | 3 7 | - | - | - | - |
9 | 0 | 8 | - | - | - | 3 11 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | 0 | - | 0 | - |
2 | - | 1 11 | - | - | - | - | 0 | 10 | - |
3 | 0 | - | - | 9 | 11 | - | 9 | - | - |
4 | 0 | - | 3 | 1 11 | - | - | - | - | - |
5 | - | - | 1 | - | - | 3 | 1 | - | 1 |
6 | 0 | - | - | - | 9 | - | - | 9 | 1 |
7 | - | 0 | 3 | - | 11 | - | - | 1 | - |
8 | 0 | 2 | - | - | - | 3 | 11 | - | - |
9 | - | - | - | - | 11 | 11 | - | - | 1 11 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | 0 2 | - | - | 0 | - | 0 | - |
3 | - | 0 10 | - | - | - | 9 | - | 1 | - |
4 | 0 | - | - | - | 1 3 | - | - | 3 | - |
5 | 0 | - | - | 9 11 | - | - | - | 11 | - |
6 | - | 0 | 3 | - | - | - | 11 | - | 3 |
7 | 0 | - | - | - | - | 1 | - | - | 1 3 |
8 | - | 0 | 11 | 9 | 1 | - | - | - | - |
9 | 0 | - | - | - | - | 9 | 9 11 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 8 | 0 | - | 4 |
3 | - | - | - | 8 | 4 | - | 4 | 8 | - |
4 | - | 0 | 4 | - | - | - | - | 9 | 1 |
5 | 0 | - | 8 | - | - | - | 9 | - | 9 |
6 | 0 | 4 | - | - | - | - | 1 | 9 | - |
7 | - | 0 | 8 | - | 3 | 11 | - | - | - |
8 | 0 | - | 4 | 3 | - | 3 | - | - | - |
9 | 0 | 8 | - | 11 | 3 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | 0 | - | - | 0 2 | - |
2 | - | - | 10 | - | 2 | - | - | - | 0 10 |
3 | 0 | 2 | - | 1 | - | 1 | - | - | - |
4 | - | - | 11 | 1 11 | - | - | 11 | - | - |
5 | 0 | 10 | - | - | - | - | - | 11 | 11 |
6 | - | - | 11 | - | - | 1 11 | 3 | - | - |
7 | - | - | - | 1 | - | 9 | - | 1 | 9 |
8 | 0 10 | - | - | - | 1 | - | 11 | - | - |
9 | - | 0 2 | - | - | 1 | - | 3 | - | - |