C4graphGraph forms for C4 [ 108, 16 ] = UG(ATD[108,3])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 108, 16 ] = UG(ATD[108,3]).

(I) Following is a form readable by MAGMA:

g:=Graph<108|{ {38, 39}, {92, 93}, {84, 85}, {82, 83}, {44, 45}, {76, 77}, {21, 23}, {88, 90}, {37, 39}, {1, 2}, {61, 62}, {1, 5}, {3, 7}, {2, 6}, {58, 62}, {35, 38}, {35, 36}, {98, 101}, {53, 61}, {66, 74}, {67, 75}, {52, 63}, {99, 104}, {2, 14}, {102, 106}, {87, 91}, {4, 8}, {3, 15}, {68, 73}, {69, 72}, {33, 47}, {33, 46}, {102, 105}, {40, 56}, {73, 89}, {11, 26}, {38, 52}, {70, 84}, {64, 83}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {13, 24}, {11, 29}, {32, 56}, {68, 92}, {71, 95}, {34, 59}, {71, 94}, {8, 20}, {79, 83}, {37, 57}, {11, 23}, {10, 22}, {9, 21}, {43, 55}, {3, 30}, {43, 54}, {39, 58}, {36, 57}, {6, 27}, {66, 95}, {67, 94}, {78, 83}, {15, 17}, {35, 61}, {75, 85}, {76, 82}, {15, 16}, {9, 41}, {75, 107}, {8, 41}, {21, 52}, {19, 50}, {17, 48}, {14, 47}, {12, 45}, {64, 97}, {65, 99}, {8, 43}, {22, 53}, {18, 49}, {13, 46}, {16, 53}, {66, 100}, {11, 44}, {28, 59}, {20, 51}, {69, 98}, {5, 45}, {31, 55}, {68, 108}, {7, 46}, {78, 103}, {77, 100}, {10, 33}, {79, 100}, {78, 101}, {29, 54}, {18, 62}, {19, 63}, {73, 101}, {5, 40}, {28, 49}, {7, 42}, {6, 41}, {17, 35}, {26, 40}, {23, 37}, {95, 108}, {82, 102}, {88, 108}, {20, 33}, {80, 101}, {10, 50}, {91, 99}, {25, 32}, {81, 107}, {27, 32}, {91, 96}, {90, 97}, {28, 39}, {16, 44}, {1, 60}, {87, 105}, {90, 100}, {29, 34}, {19, 81}, {31, 93}, {25, 91}, {24, 90}, {21, 87}, {1, 66}, {10, 73}, {9, 77}, {40, 108}, {20, 80}, {18, 86}, {13, 72}, {12, 68}, {31, 87}, {22, 94}, {24, 81}, {4, 78}, {27, 81}, {9, 67}, {26, 86}, {28, 80}, {42, 103}, {22, 88}, {23, 89}, {25, 86}, {48, 96}, {49, 97}, {58, 106}, {48, 97}, {2, 80}, {29, 79}, {14, 93}, {61, 104}, {49, 103}, {60, 106}, {31, 72}, {53, 98}, {50, 106}, {30, 71}, {14, 84}, {15, 85}, {50, 104}, {51, 105}, {27, 64}, {51, 104}, {54, 107}, {57, 103}, {62, 96}, {56, 89}, {59, 89}, {34, 65}, {47, 76}, {3, 102}, {47, 74}, {42, 76}, {4, 99}, {32, 71}, {63, 88}, {60, 85}, {60, 86}, {43, 64}, {12, 96}, {45, 65}, {37, 72}, {36, 75}, {42, 69}, {59, 84}, {54, 70}, {46, 92}, {26, 105}, {57, 74}, {55, 67}, {30, 107}, {41, 95}, {55, 65}, {38, 94}, {36, 93}, {63, 70}, {48, 74}, {52, 79}, {30, 98}, {58, 70}, {56, 69}, {34, 92}, {44, 82}, {51, 77} }>;

(II) A more general form is to represent the graph as the orbit of {38, 39} under the group generated by the following permutations:

a: (1, 2, 6, 18, 49, 97, 48, 74, 66)(3, 10, 30, 50, 98, 19, 53, 7, 22)(4, 13, 38, 82, 68, 75, 51, 56, 70)(5, 14, 41, 86, 28, 64, 96, 57, 100)(8, 25, 39, 83, 12, 36, 77, 40, 84)(9, 26, 59, 43, 91, 37, 79, 45, 93)(11, 34, 55, 87, 23, 29, 65, 31, 21)(15, 33, 71, 106, 101, 81, 61, 42, 88)(16, 46, 94, 102, 73, 107, 104, 69, 63)(17, 47, 95, 60, 80, 27, 62, 103, 90)(20, 32, 58, 78, 24, 35, 76, 108, 85)(44, 92, 67, 105, 89, 54, 99, 72, 52)
b: (2, 5)(3, 9)(6, 17)(7, 21)(8, 16)(10, 29)(11, 33)(12, 28)(13, 37)(14, 40)(15, 41)(18, 48)(19, 52)(20, 44)(22, 54)(23, 46)(24, 39)(25, 57)(26, 47)(27, 35)(30, 67)(31, 69)(32, 36)(34, 73)(38, 81)(42, 87)(43, 53)(45, 80)(49, 96)(50, 79)(51, 82)(55, 98)(56, 93)(58, 90)(59, 68)(60, 66)(61, 64)(62, 97)(65, 101)(70, 88)(71, 75)(74, 86)(76, 105)(77, 102)(78, 99)(83, 104)(84, 108)(85, 95)(89, 92)(91, 103)(94, 107)(100, 106)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 108, 16 ]
108
-1 66 2 5 60
-2 1 14 80 6
-3 102 15 7 30
-4 99 78 16 8
-5 1 45 17 40
-6 2 27 18 41
-7 46 3 19 42
-8 4 41 20 43
-9 77 67 41 21
-10 22 33 50 73
-11 44 23 26 29
-12 45 24 68 96
-13 24 46 25 72
-14 2 47 93 84
-15 3 16 17 85
-16 44 4 15 53
-17 35 15 48 5
-18 49 6 62 86
-19 81 50 7 63
-20 33 80 51 8
-21 23 52 9 87
-22 88 94 53 10
-23 11 89 37 21
-24 12 13 90 81
-25 13 91 86 32
-26 11 105 40 86
-27 81 6 64 32
-28 80 59 49 39
-29 11 34 79 54
-30 3 71 107 98
-31 55 93 72 87
-32 56 25 27 71
-33 46 47 20 10
-34 59 92 29 65
-35 36 38 17 61
-36 35 57 93 75
-37 23 57 39 72
-38 35 39 94 52
-39 58 37 38 28
-40 56 26 5 108
-41 6 95 8 9
-42 69 103 7 76
-43 55 8 64 54
-44 11 45 16 82
-45 44 12 5 65
-46 33 13 92 7
-47 33 14 74 76
-48 17 74 96 97
-49 103 28 18 97
-50 104 106 19 10
-51 77 104 105 20
-52 79 38 63 21
-53 22 16 61 98
-54 70 29 107 43
-55 67 31 43 65
-56 89 69 40 32
-57 36 37 103 74
-58 70 39 62 106
-59 34 89 28 84
-60 1 106 85 86
-61 35 104 62 53
-62 58 61 18 96
-63 88 70 19 52
-64 27 83 97 43
-65 55 99 34 45
-66 1 100 95 74
-67 55 94 9 75
-68 12 92 73 108
-69 56 72 42 98
-70 58 84 63 54
-71 94 95 30 32
-72 13 69 37 31
-73 89 68 101 10
-74 66 57 47 48
-75 67 36 85 107
-76 77 47 82 42
-77 100 51 9 76
-78 101 4 103 83
-79 100 83 29 52
-80 2 101 28 20
-81 24 27 19 107
-82 44 102 83 76
-83 78 79 82 64
-84 14 59 70 85
-85 15 60 84 75
-86 25 26 60 18
-87 91 105 31 21
-88 22 90 63 108
-89 23 56 59 73
-90 88 100 24 97
-91 99 25 96 87
-92 34 46 68 93
-93 14 36 92 31
-94 22 67 38 71
-95 66 71 41 108
-96 12 91 48 62
-97 90 48 49 64
-98 101 69 30 53
-99 91 4 104 65
-100 66 77 79 90
-101 78 80 73 98
-102 3 82 105 106
-103 78 57 49 42
-104 99 50 61 51
-105 102 26 51 87
-106 58 102 60 50
-107 81 30 75 54
-108 88 68 40 95
0

**************