[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 18 ] =
UG(ATD[108,18]).
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {14, 15}, {70, 71}, {64, 65}, {1, 2}, {92, 95}, {84, 87}, {33,
34}, {17, 18}, {41, 42}, {44, 47}, {1, 5}, {3, 7}, {2, 6}, {50, 54}, {35, 38},
{91, 93}, {27, 28}, {32, 39}, {99, 107}, {68, 78}, {69, 79}, {98, 105}, {2, 14},
{4, 8}, {3, 15}, {87, 90}, {17, 31}, {98, 108}, {38, 40}, {67, 77}, {33, 46},
{70, 86}, {44, 62}, {67, 81}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5,
17}, {64, 85}, {73, 94}, {75, 92}, {77, 85}, {43, 50}, {68, 93}, {32, 58}, {36,
62}, {36, 63}, {66, 89}, {69, 94}, {8, 20}, {11, 23}, {10, 22}, {9, 21}, {45,
48}, {76, 81}, {34, 60}, {35, 61}, {46, 49}, {5, 37}, {31, 63}, {13, 45}, {6,
38}, {9, 40}, {7, 37}, {15, 45}, {14, 44}, {11, 41}, {19, 48}, {28, 63}, {23,
51}, {79, 107}, {13, 40}, {79, 106}, {26, 63}, {22, 51}, {20, 49}, {12, 42},
{71, 97}, {31, 57}, {30, 56}, {13, 43}, {21, 50}, {65, 102}, {67, 107}, {76,
100}, {18, 59}, {10, 32}, {66, 104}, {1, 42}, {30, 53}, {20, 56}, {27, 55}, {26,
54}, {25, 53}, {24, 52}, {71, 106}, {78, 96}, {1, 46}, {74, 101}, {72, 103}, {8,
39}, {5, 52}, {90, 104}, {15, 60}, {95, 108}, {82, 102}, {87, 99}, {83, 103},
{19, 36}, {3, 58}, {89, 99}, {18, 47}, {16, 46}, {95, 97}, {88, 102}, {29, 34},
{33, 97}, {32, 97}, {26, 88}, {11, 72}, {9, 76}, {14, 75}, {41, 108}, {33, 103},
{26, 93}, {30, 86}, {7, 78}, {28, 85}, {25, 80}, {16, 89}, {43, 98}, {45, 100},
{27, 80}, {29, 81}, {2, 82}, {10, 90}, {52, 100}, {49, 96}, {56, 105}, {3, 81},
{22, 68}, {4, 86}, {9, 93}, {16, 68}, {10, 94}, {61, 105}, {11, 94}, {24, 78},
{28, 74}, {25, 79}, {54, 96}, {4, 83}, {20, 76}, {59, 99}, {60, 101}, {23, 77},
{31, 69}, {24, 66}, {57, 98}, {30, 67}, {53, 104}, {21, 75}, {38, 70}, {42, 74},
{8, 106}, {54, 84}, {58, 88}, {56, 91}, {61, 89}, {62, 90}, {6, 96}, {12, 107},
{48, 87}, {60, 91}, {40, 64}, {53, 92}, {12, 103}, {51, 88}, {59, 80}, {48, 92},
{36, 73}, {44, 65}, {21, 101}, {35, 83}, {34, 82}, {47, 95}, {29, 108}, {37,
84}, {49, 64}, {55, 70}, {57, 72}, {39, 85}, {41, 91}, {55, 69}, {57, 75}, {59,
72}, {17, 101}, {61, 73}, {19, 102}, {37, 80}, {29, 104}, {39, 82}, {55, 65},
{35, 84}, {58, 66}, {51, 74}, {52, 77}, {62, 71}, {50, 73}, {47, 83}, {23, 106},
{43, 86}, {22, 105}, {27, 100} }>;
(II) A more general form is to represent the graph as the orbit of {14, 15}
under the group generated by the following permutations:
a: (2, 46)(3, 93)(4, 44)(5, 42)(6, 33)(7, 91)(8, 65)(9, 58)(10, 13)(11, 80)(12,
17)(14, 16)(15, 68)(18, 103)(19, 56)(20, 102)(21, 66)(22, 45)(23, 27)(24,
101)(25, 94)(26, 81)(28, 77)(29, 54)(30, 36)(31, 107)(32, 40)(34, 96)(35,
95)(37, 41)(38, 97)(39, 64)(43, 90)(47, 83)(48, 105)(49, 82)(50, 104)(51,
100)(52, 74)(53, 73)(55, 106)(57, 99)(59, 72)(60, 78)(61, 92)(62, 86)(63,
67)(69, 79)(70, 71)(75, 89)(76, 88)(84, 108)(87, 98) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(4, 11)(6, 17)(7, 15)(8, 23)(9, 26)(10, 30)(12, 33)(13, 36)(14, 37)(16,
41)(19, 45)(20, 51)(21, 54)(22, 56)(24, 34)(25, 62)(27, 65)(28, 64)(29, 66)(31,
38)(32, 67)(35, 57)(39, 77)(40, 63)(42, 46)(43, 73)(44, 80)(47, 59)(49, 74)(52,
82)(53, 90)(58, 81)(60, 78)(61, 98)(68, 91)(69, 70)(71, 79)(72, 83)(75, 84)(76,
88)(86, 94)(87, 92)(89, 108)(95, 99)(96, 101)(97, 107)(100, 102)
c: (1, 2, 6, 18, 47, 83, 103, 33, 46)(3, 9, 27, 48, 43, 79, 104, 56, 77)(4, 12,
34, 49, 5, 14, 38, 59, 95)(7, 21, 55, 87, 98, 106, 66, 91, 85)(8, 24, 60, 64,
37, 75, 70, 99, 108)(10, 22, 51, 88, 26, 63, 36, 73, 94)(11, 32, 68, 74, 102,
54, 31, 62, 61)(13, 25, 53, 30, 67, 81, 76, 100, 45)(15, 40, 80, 92, 86, 107,
29, 20, 52)(16, 42, 82, 96, 17, 44, 35, 72, 97)(19, 50, 69, 90, 105, 23, 58, 93,
28)(39, 78, 101, 65, 84, 57, 71, 89, 41)
C4[ 108, 18 ]
108
-1 2 46 5 42
-2 1 14 82 6
-3 58 15 81 7
-4 16 83 8 86
-5 1 37 17 52
-6 2 38 18 96
-7 78 3 37 19
-8 4 39 106 20
-9 93 40 21 76
-10 22 90 94 32
-11 23 72 94 41
-12 24 103 107 42
-13 45 25 40 43
-14 44 2 15 75
-15 45 3 14 60
-16 89 46 68 4
-17 101 5 18 31
-18 47 59 6 17
-19 36 102 48 7
-20 56 49 8 76
-21 101 50 9 75
-22 68 105 51 10
-23 11 77 51 106
-24 66 12 78 52
-25 13 79 80 53
-26 88 93 63 54
-27 55 100 80 28
-28 27 63 74 85
-29 34 81 104 108
-30 56 67 53 86
-31 57 69 17 63
-32 58 39 97 10
-33 34 46 103 97
-34 33 60 82 29
-35 38 61 83 84
-36 62 73 19 63
-37 80 5 7 84
-38 35 70 6 40
-39 82 8 85 32
-40 13 38 9 64
-41 11 91 42 108
-42 1 12 41 74
-43 13 50 86 98
-44 14 47 62 65
-45 100 13 15 48
-46 33 1 16 49
-47 44 83 18 95
-48 45 92 19 87
-49 46 96 20 64
-50 73 21 43 54
-51 22 88 23 74
-52 77 100 24 5
-53 25 92 104 30
-54 26 50 84 96
-55 69 70 27 65
-56 91 105 30 20
-57 72 31 75 98
-58 66 88 3 32
-59 99 80 72 18
-60 34 101 91 15
-61 89 35 105 73
-62 44 90 36 71
-63 36 26 28 31
-64 49 40 85 65
-65 44 55 102 64
-66 89 24 58 104
-67 77 81 30 107
-68 22 78 16 93
-69 55 79 94 31
-70 55 38 71 86
-71 70 62 106 97
-72 11 57 59 103
-73 36 50 61 94
-74 101 28 51 42
-75 57 14 92 21
-76 100 81 9 20
-77 23 67 52 85
-78 24 68 7 96
-79 25 69 106 107
-80 25 37 59 27
-81 67 3 29 76
-82 34 2 102 39
-83 35 47 4 103
-84 35 37 54 87
-85 77 28 39 64
-86 4 70 30 43
-87 99 90 48 84
-88 58 102 26 51
-89 66 99 16 61
-90 104 62 10 87
-91 56 60 93 41
-92 48 95 53 75
-93 68 91 26 9
-94 11 69 73 10
-95 47 92 97 108
-96 78 49 6 54
-97 33 71 95 32
-98 57 105 108 43
-99 89 59 107 87
-100 45 27 52 76
-101 60 17 74 21
-102 88 82 19 65
-103 33 12 72 83
-104 66 90 29 53
-105 22 56 61 98
-106 23 79 71 8
-107 99 12 67 79
-108 29 95 41 98
0