[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 108, 22 ] =
XI(Rmap(54,3){4,12|3}_6).
(I) Following is a form readable by MAGMA:
g:=Graph<108|{ {53, 55}, {50, 55}, {53, 60}, {50, 57}, {51, 63}, {52, 57}, {54,
59}, {44, 60}, {42, 59}, {42, 56}, {46, 61}, {41, 61}, {47, 56}, {35, 58}, {30,
63}, {30, 58}, {25, 62}, {22, 62}, {2, 55}, {1, 55}, {9, 63}, {8, 62}, {1, 57},
{5, 61}, {2, 58}, {1, 56}, {1, 59}, {4, 62}, {3, 56}, {7, 60}, {2, 63}, {6, 59},
{4, 57}, {2, 60}, {3, 61}, {5, 58}, {9, 73}, {17, 81}, {10, 74}, {32, 96}, {4,
69}, {40, 105}, {18, 83}, {15, 78}, {11, 74}, {6, 71}, {24, 89}, {31, 93}, {42,
104}, {37, 103}, {3, 64}, {47, 108}, {23, 84}, {5, 70}, {6, 66}, {7, 67}, {38,
98}, {4, 65}, {46, 107}, {41, 108}, {12, 73}, {25, 92}, {8, 78}, {12, 74}, {9,
79}, {30, 88}, {31, 89}, {34, 100}, {35, 101}, {39, 97}, {3, 68}, {23, 80}, {19,
84}, {35, 107}, {43, 99}, {42, 98}, {41, 97}, {40, 96}, {13, 68}, {21, 92}, {18,
91}, {15, 70}, {24, 81}, {28, 85}, {6, 76}, {16, 90}, {11, 65}, {10, 64}, {8,
66}, {7, 77}, {28, 86}, {29, 87}, {14, 69}, {46, 101}, {21, 94}, {23, 90}, {27,
86}, {31, 82}, {38, 107}, {39, 106}, {5, 75}, {47, 97}, {17, 95}, {7, 72}, {20,
91}, {12, 67}, {26, 85}, {36, 107}, {37, 106}, {13, 93}, {50, 98}, {24, 72},
{15, 95}, {14, 94}, {18, 67}, {29, 76}, {16, 67}, {51, 96}, {22, 69}, {14, 88},
{48, 102}, {15, 89}, {16, 71}, {52, 99}, {49, 102}, {25, 78}, {18, 74}, {21,
77}, {20, 76}, {19, 75}, {17, 72}, {22, 79}, {10, 80}, {51, 105}, {50, 104},
{13, 87}, {11, 81}, {8, 84}, {48, 108}, {10, 86}, {9, 85}, {11, 86}, {49, 108},
{16, 77}, {14, 83}, {12, 82}, {24, 70}, {13, 82}, {54, 105}, {53, 106}, {17,
78}, {29, 66}, {33, 65}, {34, 66}, {33, 64}, {54, 87}, {40, 73}, {48, 83}, {44,
72}, {45, 73}, {35, 70}, {46, 75}, {49, 88}, {32, 75}, {44, 71}, {38, 77}, {39,
76}, {41, 68}, {53, 88}, {48, 94}, {43, 68}, {47, 64}, {32, 80}, {33, 81}, {23,
102}, {54, 71}, {33, 80}, {43, 89}, {19, 96}, {20, 103}, {27, 104}, {28, 104},
{49, 69}, {29, 105}, {30, 106}, {19, 102}, {52, 65}, {22, 99}, {20, 97}, {34,
84}, {45, 91}, {44, 90}, {21, 98}, {36, 92}, {39, 95}, {28, 101}, {36, 93}, {32,
90}, {36, 94}, {37, 95}, {38, 93}, {52, 79}, {27, 103}, {51, 79}, {43, 87}, {31,
99}, {25, 100}, {26, 103}, {40, 85}, {26, 100}, {45, 83}, {34, 92}, {37, 91},
{26, 101}, {45, 82}, {27, 100} }>;
(II) A more general form is to represent the graph as the orbit of {53, 55}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(7, 10)(9, 13)(11, 16)(14, 20)(15, 19)(17, 23)(21, 27)(22,
29)(24, 32)(25, 34)(26, 36)(28, 38)(30, 41)(31, 40)(33, 44)(35, 46)(37, 48)(39,
49)(42, 50)(43, 51)(47, 53)(52, 54)(55, 56)(57, 59)(58, 61)(60, 64)(62, 66)(63,
68)(65, 71)(67, 74)(69, 76)(70, 75)(72, 80)(73, 82)(77, 86)(78, 84)(79, 87)(81,
90)(83, 91)(85, 93)(88, 97)(89, 96)(92, 100)(94, 103)(95, 102)(98, 104)(99,
105)(101, 107)(106, 108) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 18)(13, 20)(17, 24)(21, 28)(22,
30)(23, 32)(25, 35)(26, 36)(27, 38)(29, 41)(31, 37)(33, 44)(34, 46)(39, 43)(40,
48)(47, 54)(49, 51)(52, 53)(55, 57)(56, 59)(58, 62)(60, 65)(61, 66)(63, 69)(64,
71)(67, 74)(68, 76)(70, 78)(72, 81)(73, 83)(75, 84)(77, 86)(79, 88)(80, 90)(82,
91)(85, 94)(87, 97)(89, 95)(92, 101)(93, 103)(96, 102)(98, 104)(99, 106)(100,
107)(105, 108)
c: (1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 19)(14, 21)(16, 22)(18,
25)(20, 26)(23, 31)(24, 33)(27, 37)(28, 39)(29, 40)(30, 42)(32, 43)(34, 45)(35,
47)(36, 48)(38, 49)(41, 46)(44, 52)(50, 53)(51, 54)(56, 58)(57, 60)(59, 63)(62,
67)(64, 70)(65, 72)(66, 73)(68, 75)(69, 77)(71, 79)(74, 78)(76, 85)(80, 89)(82,
84)(83, 92)(86, 95)(87, 96)(88, 98)(90, 99)(91, 100)(93, 102)(97, 101)(104,
106)(107, 108)
C4[ 108, 22 ]
108
-1 55 56 57 59
-2 55 58 60 63
-3 56 68 61 64
-4 57 69 62 65
-5 58 70 61 75
-6 66 59 71 76
-7 77 67 60 72
-8 66 78 62 84
-9 79 73 63 85
-10 80 74 64 86
-11 81 74 86 65
-12 67 82 73 74
-13 68 82 93 87
-14 88 69 83 94
-15 78 89 70 95
-16 77 67 90 71
-17 78 81 72 95
-18 67 91 83 74
-19 102 84 96 75
-20 91 103 97 76
-21 77 92 94 98
-22 99 79 69 62
-23 90 80 102 84
-24 89 70 81 72
-25 78 100 92 62
-26 100 101 103 85
-27 100 103 104 86
-28 101 104 85 86
-29 66 105 76 87
-30 88 58 106 63
-31 99 89 82 93
-32 90 80 96 75
-33 80 81 64 65
-34 66 100 92 84
-35 101 58 70 107
-36 92 93 94 107
-37 91 103 95 106
-38 77 93 107 98
-39 95 106 97 76
-40 105 73 85 96
-41 68 61 97 108
-42 56 59 104 98
-43 99 89 68 87
-44 90 60 71 72
-45 91 82 83 73
-46 101 61 107 75
-47 56 64 97 108
-48 102 83 94 108
-49 88 69 102 108
-50 55 57 104 98
-51 79 105 63 96
-52 99 57 79 65
-53 55 88 60 106
-54 59 71 105 87
-55 1 2 50 53
-56 1 3 47 42
-57 1 4 50 52
-58 2 35 5 30
-59 1 6 42 54
-60 44 2 7 53
-61 46 3 5 41
-62 22 25 4 8
-63 2 51 30 9
-64 33 3 47 10
-65 11 33 4 52
-66 34 6 29 8
-67 12 16 7 18
-68 13 3 41 43
-69 22 14 4 49
-70 24 35 15 5
-71 44 16 6 54
-72 44 24 17 7
-73 12 45 40 9
-74 11 12 18 10
-75 46 5 19 32
-76 6 39 29 20
-77 16 38 7 21
-78 25 15 17 8
-79 22 51 52 9
-80 33 23 10 32
-81 11 33 24 17
-82 12 45 13 31
-83 45 14 48 18
-84 23 34 8 19
-85 26 28 40 9
-86 11 27 28 10
-87 13 29 43 54
-88 14 49 30 53
-89 24 15 31 43
-90 44 23 16 32
-91 45 37 18 20
-92 34 25 36 21
-93 13 36 38 31
-94 14 36 48 21
-95 15 37 17 39
-96 40 51 19 32
-97 47 39 41 20
-98 38 50 42 21
-99 22 52 31 43
-100 34 25 26 27
-101 35 46 26 28
-102 23 48 49 19
-103 26 37 27 20
-104 27 28 50 42
-105 29 40 51 54
-106 37 39 30 53
-107 35 46 36 38
-108 47 48 49 41
0