C4graphGraph forms for C4 [ 108, 23 ] = XI(Rmap(54,6){6,6|6}_6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 108, 23 ] = XI(Rmap(54,6){6,6|6}_6).

(I) Following is a form readable by MAGMA:

g:=Graph<108|{ {52, 61}, {44, 63}, {40, 61}, {44, 58}, {41, 62}, {39, 62}, {20, 55}, {30, 58}, {31, 59}, {31, 56}, {19, 56}, {18, 63}, {20, 57}, {11, 59}, {12, 60}, {2, 55}, {10, 63}, {8, 61}, {1, 55}, {9, 62}, {1, 57}, {4, 60}, {2, 58}, {1, 56}, {1, 59}, {4, 62}, {3, 56}, {12, 55}, {7, 60}, {2, 63}, {6, 59}, {4, 57}, {2, 60}, {7, 57}, {3, 61}, {5, 58}, {4, 69}, {17, 80}, {11, 74}, {9, 72}, {20, 86}, {46, 108}, {25, 91}, {3, 64}, {16, 83}, {10, 73}, {5, 70}, {32, 99}, {40, 107}, {5, 65}, {21, 81}, {7, 67}, {6, 66}, {44, 105}, {6, 64}, {19, 85}, {18, 84}, {26, 92}, {27, 93}, {36, 98}, {38, 96}, {3, 68}, {12, 75}, {8, 79}, {27, 92}, {34, 101}, {22, 94}, {45, 101}, {23, 95}, {29, 85}, {33, 105}, {35, 107}, {5, 76}, {46, 103}, {43, 98}, {7, 78}, {26, 83}, {35, 106}, {13, 71}, {47, 101}, {45, 103}, {43, 97}, {25, 83}, {24, 82}, {38, 108}, {6, 77}, {21, 94}, {11, 64}, {10, 70}, {15, 67}, {14, 66}, {13, 65}, {37, 105}, {29, 80}, {46, 99}, {33, 108}, {39, 106}, {38, 104}, {46, 96}, {8, 71}, {54, 102}, {9, 88}, {14, 92}, {52, 102}, {48, 98}, {15, 93}, {28, 78}, {10, 89}, {24, 75}, {19, 64}, {28, 79}, {16, 68}, {18, 70}, {17, 69}, {25, 76}, {49, 100}, {27, 78}, {12, 90}, {13, 91}, {26, 77}, {51, 100}, {17, 73}, {50, 106}, {18, 74}, {28, 68}, {29, 69}, {30, 70}, {9, 80}, {27, 66}, {48, 107}, {51, 104}, {15, 82}, {23, 74}, {21, 72}, {8, 87}, {22, 73}, {16, 79}, {14, 81}, {11, 84}, {28, 67}, {42, 75}, {47, 77}, {53, 87}, {41, 76}, {51, 86}, {48, 85}, {43, 78}, {40, 79}, {54, 81}, {42, 77}, {13, 101}, {15, 103}, {14, 102}, {45, 71}, {52, 94}, {51, 89}, {49, 91}, {34, 73}, {41, 69}, {37, 72}, {53, 88}, {47, 66}, {49, 95}, {50, 93}, {16, 96}, {52, 68}, {49, 65}, {42, 90}, {22, 102}, {20, 100}, {32, 81}, {50, 67}, {36, 85}, {19, 97}, {53, 71}, {41, 91}, {32, 82}, {33, 83}, {36, 86}, {40, 90}, {23, 100}, {24, 107}, {37, 86}, {39, 84}, {44, 88}, {34, 87}, {26, 108}, {43, 93}, {42, 92}, {35, 84}, {54, 65}, {39, 80}, {31, 103}, {50, 74}, {47, 87}, {17, 104}, {25, 96}, {33, 88}, {35, 90}, {37, 95}, {54, 76}, {24, 99}, {48, 75}, {34, 89}, {36, 95}, {21, 105}, {29, 97}, {30, 98}, {31, 99}, {23, 106}, {53, 72}, {22, 104}, {32, 94}, {30, 97}, {45, 82}, {38, 89} }>;

(II) A more general form is to represent the graph as the orbit of {52, 61} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 38)(28, 41)(29, 43)(31, 44)(33, 46)(34, 47)(36, 48)(39, 50)(40, 49)(42, 51)(45, 53)(52, 54)(56, 58)(57, 60)(59, 63)(61, 65)(62, 67)(64, 70)(66, 73)(68, 76)(69, 78)(72, 82)(74, 84)(75, 86)(77, 89)(79, 91)(80, 93)(81, 94)(83, 96)(85, 98)(87, 101)(88, 103)(90, 100)(92, 104)(95, 107)(99, 105)
b: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(13, 21)(15, 36)(16, 17)(18, 42)(20, 31)(22, 25)(23, 24)(27, 30)(28, 29)(32, 49)(33, 34)(37, 45)(39, 40)(41, 52)(44, 47)(46, 51)(48, 50)(55, 59)(56, 57)(58, 66)(60, 64)(61, 62)(63, 77)(65, 81)(67, 85)(68, 69)(70, 92)(71, 72)(73, 83)(74, 75)(76, 102)(78, 97)(79, 80)(82, 95)(84, 90)(86, 103)(87, 88)(89, 108)(91, 94)(93, 98)(96, 104)(99, 100)(101, 105)(106, 107)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 34)(27, 39)(29, 42)(30, 40)(32, 37)(35, 43)(41, 47)(44, 52)(45, 49)(46, 51)(53, 54)(55, 56)(57, 59)(58, 61)(60, 64)(62, 66)(63, 68)(65, 71)(67, 74)(69, 77)(70, 79)(72, 81)(73, 83)(75, 85)(76, 87)(78, 84)(80, 92)(82, 95)(86, 99)(88, 102)(89, 96)(90, 97)(91, 101)(93, 106)(94, 105)(98, 107)(100, 103)(104, 108)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 108, 23 ]
108
-1 55 56 57 59
-2 55 58 60 63
-3 56 68 61 64
-4 57 69 60 62
-5 58 70 65 76
-6 66 77 59 64
-7 67 78 57 60
-8 79 71 61 87
-9 88 80 72 62
-10 89 70 73 63
-11 59 84 74 64
-12 55 90 60 75
-13 101 91 71 65
-14 66 102 81 92
-15 67 103 82 93
-16 68 79 83 96
-17 69 80 104 73
-18 70 84 63 74
-19 56 85 64 97
-20 55 100 57 86
-21 81 72 94 105
-22 102 104 94 73
-23 100 95 106 74
-24 99 82 107 75
-25 91 83 96 76
-26 77 92 83 108
-27 66 78 92 93
-28 67 78 68 79
-29 69 80 85 97
-30 58 70 97 98
-31 99 56 59 103
-32 99 81 82 94
-33 88 83 105 108
-34 89 101 73 87
-35 90 84 106 107
-36 95 85 86 98
-37 72 105 95 86
-38 89 104 96 108
-39 80 62 84 106
-40 79 90 61 107
-41 69 91 62 76
-42 77 90 92 75
-43 78 93 97 98
-44 88 58 105 63
-45 101 103 71 82
-46 99 103 96 108
-47 66 77 101 87
-48 85 107 75 98
-49 100 91 95 65
-50 67 93 106 74
-51 89 100 104 86
-52 68 102 61 94
-53 88 71 72 87
-54 102 81 65 76
-55 1 12 2 20
-56 1 3 19 31
-57 1 4 7 20
-58 44 2 5 30
-59 11 1 6 31
-60 12 2 4 7
-61 3 40 8 52
-62 4 39 41 9
-63 44 2 18 10
-64 11 3 6 19
-65 13 5 49 54
-66 14 47 27 6
-67 15 28 50 7
-68 3 16 28 52
-69 4 17 29 41
-70 5 18 30 10
-71 45 13 8 53
-72 37 9 53 21
-73 22 34 17 10
-74 11 23 50 18
-75 12 24 48 42
-76 25 5 41 54
-77 47 26 6 42
-78 27 28 7 43
-79 16 28 40 8
-80 17 39 29 9
-81 14 21 32 54
-82 45 24 15 32
-83 33 25 26 16
-84 11 35 39 18
-85 36 48 29 19
-86 36 37 51 20
-87 34 47 8 53
-88 33 44 9 53
-89 34 38 51 10
-90 12 35 40 42
-91 13 25 49 41
-92 14 26 27 42
-93 15 27 50 43
-94 22 52 21 32
-95 23 36 37 49
-96 46 25 16 38
-97 29 19 30 43
-98 36 48 30 43
-99 24 46 31 32
-100 23 49 51 20
-101 34 45 13 47
-102 22 14 52 54
-103 45 46 15 31
-104 22 38 17 51
-105 33 44 37 21
-106 23 35 39 50
-107 24 35 48 40
-108 33 46 26 38
0

**************