[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 110, 1 ] =
W(55,2).
(I) Following is a form readable by MAGMA:
g:=Graph<110|{ {2, 3}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100,
101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {40, 41}, {38,
39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7},
{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23},
{24, 25}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55},
{56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71},
{72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87},
{1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {37,
38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21,
22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69,
70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {3, 4}, {107, 108}, {99, 100}, {91,
92}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {67,
68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71,
72}, {87, 88}, {15, 16}, {47, 48}, {79, 80}, {1, 55}, {8, 62}, {9, 63}, {1, 57},
{2, 58}, {3, 59}, {4, 60}, {5, 61}, {6, 62}, {7, 63}, {2, 56}, {3, 57}, {6, 60},
{7, 61}, {4, 58}, {5, 59}, {31, 32}, {95, 96}, {8, 64}, {31, 87}, {30, 86}, {29,
85}, {28, 84}, {27, 83}, {26, 82}, {25, 81}, {24, 80}, {9, 65}, {10, 66}, {11,
67}, {12, 68}, {13, 69}, {14, 70}, {15, 71}, {40, 96}, {41, 97}, {42, 98}, {43,
99}, {44, 100}, {45, 101}, {46, 102}, {47, 103}, {10, 64}, {31, 85}, {30, 84},
{27, 81}, {26, 80}, {11, 65}, {14, 68}, {15, 69}, {42, 96}, {43, 97}, {46, 100},
{47, 101}, {12, 66}, {29, 83}, {28, 82}, {13, 67}, {44, 98}, {45, 99}, {16, 70},
{25, 79}, {17, 71}, {24, 78}, {48, 102}, {49, 103}, {56, 110}, {16, 72}, {17,
73}, {18, 74}, {19, 75}, {20, 76}, {21, 77}, {22, 78}, {23, 79}, {48, 104}, {49,
105}, {50, 106}, {51, 107}, {52, 108}, {53, 109}, {54, 110}, {18, 72}, {19, 73},
{22, 76}, {23, 77}, {50, 104}, {51, 105}, {54, 108}, {55, 109}, {20, 74}, {21,
75}, {52, 106}, {53, 107}, {1, 110}, {32, 86}, {40, 94}, {33, 87}, {41, 95},
{32, 88}, {39, 95}, {38, 94}, {37, 93}, {36, 92}, {35, 91}, {34, 90}, {33, 89},
{34, 88}, {39, 93}, {38, 92}, {35, 89}, {36, 90}, {37, 91}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (42, 97) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (45, 100)
c: (10, 65)
d: (14, 69)
e: (13, 68)
f: (55, 110)
g: (36, 91)
h: (2, 55)(3, 54)(4, 53)(5, 52)(6, 51)(7, 50)(8, 49)(9, 48)(10, 47)(11, 46)(12,
45)(13, 44)(14, 43)(15, 42)(16, 41)(17, 40)(18, 39)(19, 38)(20, 37)(21, 36)(22,
35)(23, 34)(24, 33)(25, 32)(26, 31)(27, 30)(28, 29)(57, 110)(58, 109)(59,
108)(60, 107)(61, 106)(62, 105)(63, 104)(64, 103)(65, 102)(66, 101)(67, 100)(68,
99)(69, 98)(70, 97)(71, 96)(72, 95)(73, 94)(74, 93)(75, 92)(76, 91)(77, 90)(78,
89)(79, 88)(80, 87)(81, 86)(82, 85)(83, 84)
m: (17, 72)
n1: (2, 57)
a1: (53, 108)
b1: (54, 109)
c1: (40, 95)
d1: (32, 87)
e1: (15, 70)
f1: (51, 106)
g1: (44, 99)
h1: (29, 84)
m1: (37, 92)
n2: (46, 101)
a2: (8, 63)
b2: (39, 94)
c2: (38, 93)
d2: (48, 103)
e2: (49, 104)
f2: (23, 78)
g2: (6, 61)
h2: (22, 77)
m2: (52, 107)
n3: (24, 79)
a3: (26, 81)
b3: (30, 85)
c3: (31, 86)
d3: (20, 75)
e3: (50, 105)
f3: (28, 83)
g3: (41, 96)
h3: (35, 90)
m3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55)(56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110)
n4: (3, 58)
a4: (34, 89)
b4: (16, 71)
c4: (47, 102)
d4: (33, 88)
e4: (19, 74)
f4: (4, 59)
g4: (43, 98)
h4: (12, 67)
m4: (25, 80)
n5: (18, 73)
a5: (9, 64)
b5: (21, 76)
c5: (7, 62)
d5: (11, 66)
e5: (5, 60)
C4[ 110, 1 ]
110
-1 55 110 2 57
-2 1 56 3 58
-3 2 57 4 59
-4 3 58 5 60
-5 4 59 6 61
-6 5 60 7 62
-7 6 61 8 63
-8 7 62 9 64
-9 8 63 10 65
-10 11 66 9 64
-11 12 67 10 65
-12 11 66 13 68
-13 12 67 14 69
-14 13 68 15 70
-15 14 69 16 71
-16 15 70 17 72
-17 16 71 18 73
-18 17 72 19 74
-19 18 73 20 75
-20 19 74 21 76
-21 22 77 20 75
-22 23 78 21 76
-23 22 77 24 79
-24 23 78 25 80
-25 24 79 26 81
-26 25 80 27 82
-27 26 81 28 83
-28 27 82 29 84
-29 28 83 30 85
-30 29 84 31 86
-31 30 85 32 87
-32 33 88 31 86
-33 34 89 32 87
-34 33 88 35 90
-35 34 89 36 91
-36 35 90 37 92
-37 36 91 38 93
-38 37 92 39 94
-39 38 93 40 95
-40 39 94 41 96
-41 40 95 42 97
-42 41 96 43 98
-43 44 99 42 97
-44 45 100 43 98
-45 44 99 46 101
-46 45 100 47 102
-47 46 101 48 103
-48 47 102 49 104
-49 48 103 50 105
-50 49 104 51 106
-51 50 105 52 107
-52 51 106 53 108
-53 52 107 54 109
-54 55 110 53 108
-55 1 56 54 109
-56 55 110 2 57
-57 1 56 3 58
-58 2 57 4 59
-59 3 58 5 60
-60 4 59 6 61
-61 5 60 7 62
-62 6 61 8 63
-63 7 62 9 64
-64 8 63 10 65
-65 11 66 9 64
-66 12 67 10 65
-67 11 66 13 68
-68 12 67 14 69
-69 13 68 15 70
-70 14 69 16 71
-71 15 70 17 72
-72 16 71 18 73
-73 17 72 19 74
-74 18 73 20 75
-75 19 74 21 76
-76 22 77 20 75
-77 23 78 21 76
-78 22 77 24 79
-79 23 78 25 80
-80 24 79 26 81
-81 25 80 27 82
-82 26 81 28 83
-83 27 82 29 84
-84 28 83 30 85
-85 29 84 31 86
-86 30 85 32 87
-87 33 88 31 86
-88 34 89 32 87
-89 33 88 35 90
-90 34 89 36 91
-91 35 90 37 92
-92 36 91 38 93
-93 37 92 39 94
-94 38 93 40 95
-95 39 94 41 96
-96 40 95 42 97
-97 41 96 43 98
-98 44 99 42 97
-99 45 100 43 98
-100 44 99 46 101
-101 45 100 47 102
-102 46 101 48 103
-103 47 102 49 104
-104 48 103 50 105
-105 49 104 51 106
-106 50 105 52 107
-107 51 106 53 108
-108 52 107 54 109
-109 55 110 53 108
-110 1 56 54 109
0