C4graphGraph forms for C4 [ 110, 2 ] = C_110(1,21)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 110, 2 ] = C_110(1,21).

(I) Following is a form readable by MAGMA:

g:=Graph<110|{ {2, 3}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {3, 4}, {107, 108}, {99, 100}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {2, 23}, {42, 63}, {40, 61}, {34, 55}, {32, 53}, {8, 29}, {10, 31}, {64, 85}, {66, 87}, {72, 93}, {74, 95}, {1, 22}, {41, 62}, {33, 54}, {9, 30}, {65, 86}, {73, 94}, {3, 24}, {39, 60}, {35, 56}, {7, 28}, {67, 88}, {71, 92}, {4, 25}, {38, 59}, {36, 57}, {6, 27}, {68, 89}, {70, 91}, {5, 26}, {47, 48}, {37, 58}, {15, 16}, {69, 90}, {79, 80}, {11, 32}, {31, 52}, {15, 36}, {27, 48}, {75, 96}, {79, 100}, {12, 33}, {14, 35}, {28, 49}, {30, 51}, {76, 97}, {78, 99}, {13, 34}, {29, 50}, {77, 98}, {16, 37}, {18, 39}, {24, 45}, {26, 47}, {80, 101}, {82, 103}, {88, 109}, {17, 38}, {25, 46}, {81, 102}, {89, 110}, {19, 40}, {23, 44}, {83, 104}, {87, 108}, {20, 41}, {22, 43}, {84, 105}, {86, 107}, {21, 42}, {31, 32}, {85, 106}, {95, 96}, {2, 91}, {4, 93}, {6, 95}, {1, 90}, {5, 94}, {3, 92}, {7, 96}, {15, 104}, {8, 97}, {10, 99}, {12, 101}, {14, 103}, {9, 98}, {47, 68}, {43, 64}, {13, 102}, {59, 80}, {63, 84}, {44, 65}, {46, 67}, {60, 81}, {62, 83}, {1, 110}, {45, 66}, {11, 100}, {61, 82}, {48, 69}, {50, 71}, {56, 77}, {58, 79}, {49, 70}, {57, 78}, {16, 105}, {18, 107}, {20, 109}, {17, 106}, {51, 72}, {21, 110}, {55, 76}, {52, 73}, {54, 75}, {19, 108}, {53, 74}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110)
b: (2, 90)(3, 69)(4, 48)(5, 27)(7, 95)(8, 74)(9, 53)(10, 32)(12, 100)(13, 79)(14, 58)(15, 37)(17, 105)(18, 84)(19, 63)(20, 42)(22, 110)(23, 89)(24, 68)(25, 47)(28, 94)(29, 73)(30, 52)(33, 99)(34, 78)(35, 57)(38, 104)(39, 83)(40, 62)(43, 109)(44, 88)(45, 67)(49, 93)(50, 72)(54, 98)(55, 77)(59, 103)(60, 82)(64, 108)(65, 87)(70, 92)(75, 97)(80, 102)(85, 107)
c: (2, 22)(3, 43)(4, 64)(5, 85)(6, 106)(7, 17)(8, 38)(9, 59)(10, 80)(11, 101)(13, 33)(14, 54)(15, 75)(16, 96)(18, 28)(19, 49)(20, 70)(21, 91)(24, 44)(25, 65)(26, 86)(27, 107)(29, 39)(30, 60)(31, 81)(32, 102)(35, 55)(36, 76)(37, 97)(40, 50)(41, 71)(42, 92)(46, 66)(47, 87)(48, 108)(51, 61)(52, 82)(53, 103)(57, 77)(58, 98)(62, 72)(63, 93)(68, 88)(69, 109)(73, 83)(74, 104)(79, 99)(84, 94)(90, 110)(95, 105)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 110, 2 ]
110
-1 22 110 2 90
-2 1 23 3 91
-3 2 24 4 92
-4 3 25 5 93
-5 4 26 6 94
-6 5 27 7 95
-7 6 28 8 96
-8 7 29 9 97
-9 8 30 10 98
-10 11 99 9 31
-11 12 100 10 32
-12 11 33 13 101
-13 12 34 14 102
-14 13 35 15 103
-15 14 36 16 104
-16 15 37 17 105
-17 16 38 18 106
-18 17 39 19 107
-19 18 40 20 108
-20 19 41 21 109
-21 22 110 20 42
-22 1 23 21 43
-23 22 44 2 24
-24 23 45 3 25
-25 24 46 4 26
-26 25 47 5 27
-27 26 48 6 28
-28 27 49 7 29
-29 28 50 8 30
-30 29 51 9 31
-31 30 52 10 32
-32 11 33 31 53
-33 12 34 32 54
-34 33 55 13 35
-35 34 56 14 36
-36 35 57 15 37
-37 36 58 16 38
-38 37 59 17 39
-39 38 60 18 40
-40 39 61 19 41
-41 40 62 20 42
-42 41 63 21 43
-43 22 44 42 64
-44 23 45 43 65
-45 44 66 24 46
-46 45 67 25 47
-47 46 68 26 48
-48 47 69 27 49
-49 48 70 28 50
-50 49 71 29 51
-51 50 72 30 52
-52 51 73 31 53
-53 52 74 32 54
-54 33 55 53 75
-55 34 56 54 76
-56 55 77 35 57
-57 56 78 36 58
-58 57 79 37 59
-59 58 80 38 60
-60 59 81 39 61
-61 60 82 40 62
-62 61 83 41 63
-63 62 84 42 64
-64 63 85 43 65
-65 44 66 64 86
-66 45 67 65 87
-67 66 88 46 68
-68 67 89 47 69
-69 68 90 48 70
-70 69 91 49 71
-71 70 92 50 72
-72 71 93 51 73
-73 72 94 52 74
-74 73 95 53 75
-75 74 96 54 76
-76 55 77 75 97
-77 56 78 76 98
-78 77 99 57 79
-79 78 100 58 80
-80 79 101 59 81
-81 80 102 60 82
-82 81 103 61 83
-83 82 104 62 84
-84 83 105 63 85
-85 84 106 64 86
-86 85 107 65 87
-87 66 88 86 108
-88 67 89 87 109
-89 88 110 68 90
-90 1 89 69 91
-91 2 90 70 92
-92 3 91 71 93
-93 4 92 72 94
-94 5 93 73 95
-95 6 94 74 96
-96 7 95 75 97
-97 8 96 76 98
-98 77 99 9 97
-99 78 100 10 98
-100 11 99 79 101
-101 12 100 80 102
-102 13 101 81 103
-103 14 102 82 104
-104 15 103 83 105
-105 16 104 84 106
-106 17 105 85 107
-107 18 106 86 108
-108 19 107 87 109
-109 88 110 20 108
-110 1 89 21 109
0

**************