[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 110, 4 ] =
PS(10,11;2).
(I) Following is a form readable by MAGMA:
g:=Graph<110|{ {66, 67}, {21, 23}, {77, 79}, {76, 78}, {44, 47}, {32, 36}, {88,
92}, {33, 37}, {43, 46}, {99, 102}, {97, 100}, {11, 12}, {98, 101}, {88, 95},
{32, 39}, {42, 45}, {37, 45}, {99, 107}, {98, 106}, {97, 105}, {96, 104}, {38,
46}, {39, 47}, {16, 25}, {87, 94}, {85, 92}, {83, 90}, {70, 79}, {33, 40}, {22,
31}, {20, 29}, {18, 27}, {4, 14}, {5, 15}, {50, 56}, {51, 57}, {54, 60}, {55,
61}, {64, 74}, {65, 75}, {17, 26}, {86, 93}, {82, 89}, {69, 78}, {21, 30}, {51,
56}, {55, 60}, {1, 13}, {87, 91}, {86, 90}, {85, 89}, {3, 15}, {2, 14}, {64,
76}, {65, 77}, {16, 29}, {18, 31}, {52, 57}, {54, 59}, {2, 12}, {96, 110}, {22,
24}, {3, 13}, {52, 58}, {53, 59}, {66, 76}, {17, 30}, {84, 91}, {80, 95}, {19,
28}, {53, 58}, {45, 61}, {46, 62}, {47, 63}, {46, 63}, {79, 94}, {34, 48}, {35,
49}, {38, 52}, {39, 53}, {15, 28}, {78, 93}, {75, 88}, {71, 84}, {67, 80}, {36,
55}, {45, 62}, {4, 16}, {67, 87}, {7, 19}, {6, 18}, {5, 17}, {12, 25}, {70, 83},
{68, 81}, {35, 54}, {14, 27}, {6, 16}, {37, 51}, {36, 50}, {7, 17}, {1, 22},
{71, 80}, {69, 82}, {34, 53}, {15, 24}, {13, 26}, {40, 48}, {41, 49}, {42, 50},
{43, 51}, {44, 52}, {14, 23}, {76, 85}, {74, 83}, {72, 81}, {8, 18}, {9, 19},
{73, 82}, {77, 86}, {8, 20}, {68, 88}, {10, 22}, {9, 21}, {72, 85}, {74, 87},
{10, 20}, {11, 21}, {40, 54}, {41, 55}, {73, 86}, {75, 84}, {12, 32}, {13, 33},
{78, 96}, {79, 97}, {23, 38}, {83, 98}, {81, 96}, {29, 44}, {27, 42}, {25, 40},
{24, 42}, {95, 109}, {94, 108}, {91, 105}, {90, 104}, {81, 99}, {80, 98}, {25,
43}, {19, 32}, {82, 97}, {26, 41}, {20, 33}, {91, 110}, {89, 108}, {26, 44},
{93, 107}, {92, 106}, {28, 43}, {90, 109}, {84, 99}, {92, 100}, {95, 103}, {94,
102}, {93, 101}, {27, 34}, {31, 38}, {29, 36}, {30, 37}, {30, 34}, {31, 35},
{23, 41}, {89, 103}, {24, 39}, {28, 35}, {6, 100}, {11, 105}, {10, 104}, {7,
101}, {7, 100}, {11, 104}, {1, 105}, {6, 110}, {5, 109}, {4, 108}, {3, 107}, {2,
106}, {2, 107}, {4, 109}, {1, 106}, {5, 110}, {8, 101}, {10, 103}, {8, 102}, {9,
103}, {3, 108}, {9, 102}, {47, 64}, {48, 64}, {49, 65}, {50, 66}, {48, 65}, {49,
66}, {60, 72}, {61, 73}, {62, 74}, {63, 75}, {56, 77}, {62, 72}, {63, 73}, {57,
67}, {60, 70}, {61, 71}, {56, 68}, {57, 69}, {58, 70}, {59, 71}, {58, 68}, {59,
69} }>;
(II) A more general form is to represent the graph as the orbit of {66, 67}
under the group generated by the following permutations:
a: (2, 11)(3, 10)(4, 9)(5, 8)(6, 7)(13, 22)(14, 21)(15, 20)(16, 19)(17, 18)(24,
33)(25, 32)(26, 31)(27, 30)(28, 29)(35, 44)(36, 43)(37, 42)(38, 41)(39, 40)(46,
55)(47, 54)(48, 53)(49, 52)(50, 51)(57, 66)(58, 65)(59, 64)(60, 63)(61, 62)(68,
77)(69, 76)(70, 75)(71, 74)(72, 73)(79, 88)(80, 87)(81, 86)(82, 85)(83, 84)(90,
99)(91, 98)(92, 97)(93, 96)(94, 95)(101, 110)(102, 109)(103, 108)(104, 107)(105,
106) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 12, 23, 34, 45, 56, 67, 78, 89, 100)(2, 14, 27, 42, 50, 66, 76, 85, 92,
106)(3, 16, 31, 39, 55, 65, 74, 81, 95, 101)(4, 18, 24, 36, 49, 64, 72, 88, 98,
107)(5, 20, 28, 44, 54, 63, 70, 84, 90, 102)(6, 22, 32, 41, 48, 62, 68, 80, 93,
108)(7, 13, 25, 38, 53, 61, 77, 87, 96, 103)(8, 15, 29, 35, 47, 60, 75, 83, 99,
109)(9, 17, 33, 43, 52, 59, 73, 79, 91, 104)(10, 19, 26, 40, 46, 58, 71, 86, 94,
110)(11, 21, 30, 37, 51, 57, 69, 82, 97, 105)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22)(23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33)(34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44)(45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55)(56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66)(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77)(78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88)(89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99)(100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110)
C4[ 110, 4 ]
110
-1 22 13 105 106
-2 12 14 106 107
-3 13 15 107 108
-4 14 16 108 109
-5 110 15 17 109
-6 110 100 16 18
-7 100 101 17 19
-8 101 102 18 20
-9 102 103 19 21
-10 22 103 104 20
-11 12 104 105 21
-12 11 2 25 32
-13 33 1 3 26
-14 23 2 4 27
-15 24 3 5 28
-16 25 4 6 29
-17 26 5 7 30
-18 27 6 8 31
-19 28 7 9 32
-20 33 29 8 10
-21 11 23 30 9
-22 1 24 31 10
-23 14 38 41 21
-24 22 15 39 42
-25 12 16 40 43
-26 44 13 17 41
-27 34 14 18 42
-28 35 15 19 43
-29 44 36 16 20
-30 34 37 17 21
-31 22 35 38 18
-32 12 36 39 19
-33 13 37 40 20
-34 48 27 30 53
-35 49 28 31 54
-36 55 50 29 32
-37 33 45 51 30
-38 23 46 52 31
-39 24 47 53 32
-40 33 25 48 54
-41 55 23 26 49
-42 45 24 27 50
-43 46 25 28 51
-44 47 26 29 52
-45 37 61 62 42
-46 38 62 63 43
-47 44 39 63 64
-48 34 40 64 65
-49 66 35 41 65
-50 66 56 36 42
-51 56 57 37 43
-52 44 57 58 38
-53 34 58 59 39
-54 35 59 60 40
-55 36 60 61 41
-56 77 68 50 51
-57 67 69 51 52
-58 68 70 52 53
-59 69 71 53 54
-60 55 70 72 54
-61 55 45 71 73
-62 45 46 72 74
-63 46 47 73 75
-64 47 48 74 76
-65 77 48 49 75
-66 67 49 50 76
-67 66 57 80 87
-68 88 56 58 81
-69 78 57 59 82
-70 79 58 60 83
-71 80 59 61 84
-72 81 60 62 85
-73 82 61 63 86
-74 83 62 64 87
-75 88 84 63 65
-76 66 78 85 64
-77 56 79 86 65
-78 69 93 96 76
-79 77 70 94 97
-80 67 71 95 98
-81 99 68 72 96
-82 89 69 73 97
-83 90 70 74 98
-84 99 91 71 75
-85 89 92 72 76
-86 77 90 93 73
-87 67 91 94 74
-88 68 92 95 75
-89 103 82 85 108
-90 104 83 86 109
-91 110 105 84 87
-92 88 100 106 85
-93 78 101 107 86
-94 79 102 108 87
-95 88 80 103 109
-96 110 78 81 104
-97 100 79 82 105
-98 101 80 83 106
-99 102 81 84 107
-100 92 6 7 97
-101 93 7 8 98
-102 99 94 8 9
-103 89 95 9 10
-104 11 90 96 10
-105 11 1 91 97
-106 1 2 92 98
-107 99 2 3 93
-108 89 3 4 94
-109 90 4 5 95
-110 91 5 6 96
0