C4graphGraph forms for C4 [ 111, 1 ] = C_111(1,38)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 111, 1 ] = C_111(1,38).

(I) Following is a form readable by MAGMA:

g:=Graph<111|{ {2, 3}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {107, 108}, {99, 100}, {43, 44}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {47, 48}, {79, 80}, {1, 39}, {8, 46}, {9, 47}, {16, 54}, {17, 55}, {24, 62}, {25, 63}, {64, 102}, {65, 103}, {72, 110}, {73, 111}, {2, 40}, {3, 41}, {6, 44}, {7, 45}, {18, 56}, {19, 57}, {22, 60}, {23, 61}, {66, 104}, {67, 105}, {70, 108}, {71, 109}, {4, 42}, {5, 43}, {20, 58}, {21, 59}, {68, 106}, {69, 107}, {10, 48}, {11, 49}, {14, 52}, {15, 53}, {12, 50}, {13, 51}, {31, 32}, {95, 96}, {2, 75}, {38, 111}, {36, 109}, {34, 107}, {32, 105}, {4, 77}, {6, 79}, {16, 89}, {18, 91}, {20, 93}, {22, 95}, {1, 74}, {37, 110}, {33, 106}, {5, 78}, {17, 90}, {21, 94}, {3, 76}, {35, 108}, {19, 92}, {7, 80}, {15, 88}, {8, 81}, {10, 83}, {12, 85}, {14, 87}, {26, 64}, {31, 69}, {30, 68}, {27, 65}, {58, 96}, {59, 97}, {62, 100}, {63, 101}, {9, 82}, {13, 86}, {28, 66}, {29, 67}, {60, 98}, {61, 99}, {11, 84}, {32, 70}, {41, 79}, {40, 78}, {33, 71}, {48, 86}, {49, 87}, {56, 94}, {57, 95}, {34, 72}, {39, 77}, {38, 76}, {35, 73}, {50, 88}, {51, 89}, {54, 92}, {55, 93}, {1, 111}, {37, 75}, {36, 74}, {52, 90}, {53, 91}, {23, 96}, {31, 104}, {24, 97}, {30, 103}, {28, 101}, {26, 99}, {42, 80}, {43, 81}, {46, 84}, {47, 85}, {25, 98}, {29, 102}, {44, 82}, {45, 83}, {27, 100}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 74)(3, 36)(4, 109)(5, 71)(6, 33)(7, 106)(8, 68)(9, 30)(10, 103)(11, 65)(12, 27)(13, 100)(14, 62)(15, 24)(16, 97)(17, 59)(18, 21)(19, 94)(20, 56)(22, 91)(23, 53)(25, 88)(26, 50)(28, 85)(29, 47)(31, 82)(32, 44)(34, 79)(35, 41)(37, 76)(39, 111)(40, 73)(42, 108)(43, 70)(45, 105)(46, 67)(48, 102)(49, 64)(51, 99)(52, 61)(54, 96)(55, 58)(57, 93)(60, 90)(63, 87)(66, 84)(69, 81)(72, 78)(77, 110)(80, 107)(83, 104)(86, 101)(89, 98)(92, 95)
b: (2, 39)(3, 77)(5, 42)(6, 80)(8, 45)(9, 83)(11, 48)(12, 86)(14, 51)(15, 89)(17, 54)(18, 92)(20, 57)(21, 95)(23, 60)(24, 98)(26, 63)(27, 101)(29, 66)(30, 104)(32, 69)(33, 107)(35, 72)(36, 110)(38, 75)(41, 78)(44, 81)(47, 84)(50, 87)(53, 90)(56, 93)(59, 96)(62, 99)(65, 102)(68, 105)(71, 108)(74, 111)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 111, 1 ]
111
-1 111 2 39 74
-2 1 3 40 75
-3 2 4 41 76
-4 77 3 5 42
-5 78 4 6 43
-6 44 79 5 7
-7 45 80 6 8
-8 46 81 7 9
-9 47 82 8 10
-10 11 48 83 9
-11 12 49 84 10
-12 11 13 50 85
-13 12 14 51 86
-14 13 15 52 87
-15 88 14 16 53
-16 89 15 17 54
-17 55 90 16 18
-18 56 91 17 19
-19 57 92 18 20
-20 58 93 19 21
-21 22 59 94 20
-22 23 60 95 21
-23 22 24 61 96
-24 23 25 62 97
-25 24 26 63 98
-26 99 25 27 64
-27 100 26 28 65
-28 66 101 27 29
-29 67 102 28 30
-30 68 103 29 31
-31 69 104 30 32
-32 33 70 105 31
-33 34 71 106 32
-34 33 35 72 107
-35 34 36 73 108
-36 35 37 74 109
-37 110 36 38 75
-38 111 37 39 76
-39 77 1 38 40
-40 78 2 39 41
-41 79 3 40 42
-42 80 4 41 43
-43 44 81 5 42
-44 45 82 6 43
-45 44 46 83 7
-46 45 47 84 8
-47 46 48 85 9
-48 47 49 86 10
-49 11 48 50 87
-50 88 12 49 51
-51 89 13 50 52
-52 90 14 51 53
-53 91 15 52 54
-54 55 92 16 53
-55 56 93 17 54
-56 55 57 94 18
-57 56 58 95 19
-58 57 59 96 20
-59 58 60 97 21
-60 22 59 61 98
-61 99 23 60 62
-62 100 24 61 63
-63 101 25 62 64
-64 102 26 63 65
-65 66 103 27 64
-66 67 104 28 65
-67 66 68 105 29
-68 67 69 106 30
-69 68 70 107 31
-70 69 71 108 32
-71 33 70 72 109
-72 110 34 71 73
-73 111 35 72 74
-74 1 36 73 75
-75 2 37 74 76
-76 77 3 38 75
-77 78 4 39 76
-78 77 79 5 40
-79 78 80 6 41
-80 79 81 7 42
-81 80 82 8 43
-82 44 81 83 9
-83 45 82 84 10
-84 11 46 83 85
-85 12 47 84 86
-86 13 48 85 87
-87 88 14 49 86
-88 89 15 50 87
-89 88 90 16 51
-90 89 91 17 52
-91 90 92 18 53
-92 91 93 19 54
-93 55 92 94 20
-94 56 93 95 21
-95 22 57 94 96
-96 23 58 95 97
-97 24 59 96 98
-98 99 25 60 97
-99 100 26 61 98
-100 99 101 27 62
-101 100 102 28 63
-102 101 103 29 64
-103 102 104 30 65
-104 66 103 105 31
-105 67 104 106 32
-106 33 68 105 107
-107 34 69 106 108
-108 35 70 107 109
-109 110 36 71 108
-110 111 37 72 109
-111 110 1 38 73
0

**************