[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 112, 1 ] =
W(56,2).
(I) Following is a form readable by MAGMA:
g:=Graph<112|{ {2, 3}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102,
103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89},
{86, 87}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29},
{26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18,
19}, {20, 21}, {22, 23}, {24, 25}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50,
51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66,
67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82,
83}, {84, 85}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94},
{89, 90}, {85, 86}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58},
{61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {3, 4}, {107, 108},
{99, 100}, {91, 92}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52},
{59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {87, 88}, {39, 40},
{23, 24}, {55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {8, 63},
{1, 56}, {2, 59}, {3, 58}, {4, 61}, {5, 60}, {6, 63}, {7, 62}, {1, 58}, {2, 57},
{5, 62}, {6, 61}, {3, 60}, {95, 96}, {31, 32}, {4, 59}, {7, 64}, {39, 96}, {31,
88}, {15, 72}, {23, 80}, {47, 104}, {55, 112}, {8, 65}, {31, 86}, {30, 87}, {29,
84}, {28, 85}, {27, 82}, {26, 83}, {25, 80}, {9, 64}, {10, 67}, {11, 66}, {12,
69}, {13, 68}, {14, 71}, {15, 70}, {24, 81}, {40, 97}, {41, 96}, {42, 99}, {43,
98}, {44, 101}, {45, 100}, {46, 103}, {47, 102}, {57, 112}, {9, 66}, {30, 85},
{29, 86}, {26, 81}, {25, 82}, {10, 65}, {13, 70}, {14, 69}, {41, 98}, {42, 97},
{45, 102}, {46, 101}, {11, 68}, {28, 83}, {27, 84}, {12, 67}, {43, 100}, {44,
99}, {16, 71}, {24, 79}, {48, 103}, {56, 111}, {16, 73}, {17, 72}, {18, 75},
{19, 74}, {20, 77}, {21, 76}, {22, 79}, {23, 78}, {48, 105}, {49, 104}, {50,
107}, {51, 106}, {52, 109}, {53, 108}, {54, 111}, {55, 110}, {17, 74}, {18, 73},
{21, 78}, {22, 77}, {49, 106}, {50, 105}, {53, 110}, {54, 109}, {19, 76}, {20,
75}, {51, 108}, {52, 107}, {1, 112}, {32, 87}, {40, 95}, {32, 89}, {39, 94},
{38, 95}, {37, 92}, {36, 93}, {35, 90}, {34, 91}, {33, 88}, {33, 90}, {38, 93},
{37, 94}, {34, 89}, {35, 92}, {36, 91}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (54, 110) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (23, 79)
c: (47, 103)
d: (16, 72)
e: (50, 106)
f: (19, 75)
g: (21, 77)
h: (56, 112)
m: (2, 56)(3, 55)(4, 54)(5, 53)(6, 52)(7, 51)(8, 50)(9, 49)(10, 48)(11, 47)(12,
46)(13, 45)(14, 44)(15, 43)(16, 42)(17, 41)(18, 40)(19, 39)(20, 38)(21, 37)(22,
36)(23, 35)(24, 34)(25, 33)(26, 32)(27, 31)(28, 30)(58, 112)(59, 111)(60,
110)(61, 109)(62, 108)(63, 107)(64, 106)(65, 105)(66, 104)(67, 103)(68, 102)(69,
101)(70, 100)(71, 99)(72, 98)(73, 97)(74, 96)(75, 95)(76, 94)(77, 93)(78,
92)(79, 91)(80, 90)(81, 89)(82, 88)(83, 87)(84, 86)
n1: (8, 64)
a1: (10, 66)
b1: (41, 97)
c1: (31, 87)
d1: (52, 108)
e1: (17, 73)
f1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56)(57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)
g1: (30, 86)
h1: (5, 61)
m1: (48, 104)
n2: (13, 69)
a2: (29, 85)
b2: (46, 102)
c2: (15, 71)
d2: (53, 109)
e2: (22, 78)
f2: (9, 65)
g2: (44, 100)
h2: (35, 91)
m2: (38, 94)
n3: (51, 107)
a3: (20, 76)
b3: (32, 88)
c3: (55, 111)
d3: (24, 80)
e3: (49, 105)
f3: (18, 74)
g3: (7, 63)
h3: (33, 89)
m3: (25, 81)
n4: (2, 58)
a4: (6, 62)
b4: (40, 96)
c4: (28, 84)
d4: (4, 60)
e4: (43, 99)
f4: (12, 68)
g4: (45, 101)
h4: (14, 70)
m4: (37, 93)
n5: (26, 82)
a5: (11, 67)
b5: (39, 95)
c5: (42, 98)
d5: (36, 92)
e5: (34, 90)
f5: (3, 59)
C4[ 112, 1 ]
112
-1 56 2 112 58
-2 1 57 3 59
-3 2 58 4 60
-4 3 59 5 61
-5 4 60 6 62
-6 5 61 7 63
-7 6 62 8 64
-8 7 63 9 65
-9 66 8 64 10
-10 11 67 9 65
-11 66 12 68 10
-12 11 67 13 69
-13 12 68 14 70
-14 13 69 15 71
-15 14 70 16 72
-16 15 71 17 73
-17 16 72 18 74
-18 17 73 19 75
-19 18 74 20 76
-20 77 19 75 21
-21 22 78 20 76
-22 77 23 79 21
-23 22 78 24 80
-24 23 79 25 81
-25 24 80 26 82
-26 25 81 27 83
-27 26 82 28 84
-28 27 83 29 85
-29 28 84 30 86
-30 29 85 31 87
-31 88 30 86 32
-32 33 89 31 87
-33 88 34 90 32
-34 33 89 35 91
-35 34 90 36 92
-36 35 91 37 93
-37 36 92 38 94
-38 37 93 39 95
-39 38 94 40 96
-40 39 95 41 97
-41 40 96 42 98
-42 99 41 97 43
-43 44 100 42 98
-44 99 45 101 43
-45 44 100 46 102
-46 45 101 47 103
-47 46 102 48 104
-48 47 103 49 105
-49 48 104 50 106
-50 49 105 51 107
-51 50 106 52 108
-52 51 107 53 109
-53 110 52 108 54
-54 55 111 53 109
-55 110 56 112 54
-56 55 1 111 57
-57 56 2 112 58
-58 1 57 3 59
-59 2 58 4 60
-60 3 59 5 61
-61 4 60 6 62
-62 5 61 7 63
-63 6 62 8 64
-64 7 63 9 65
-65 66 8 64 10
-66 11 67 9 65
-67 66 12 68 10
-68 11 67 13 69
-69 12 68 14 70
-70 13 69 15 71
-71 14 70 16 72
-72 15 71 17 73
-73 16 72 18 74
-74 17 73 19 75
-75 18 74 20 76
-76 77 19 75 21
-77 22 78 20 76
-78 77 23 79 21
-79 22 78 24 80
-80 23 79 25 81
-81 24 80 26 82
-82 25 81 27 83
-83 26 82 28 84
-84 27 83 29 85
-85 28 84 30 86
-86 29 85 31 87
-87 88 30 86 32
-88 33 89 31 87
-89 88 34 90 32
-90 33 89 35 91
-91 34 90 36 92
-92 35 91 37 93
-93 36 92 38 94
-94 37 93 39 95
-95 38 94 40 96
-96 39 95 41 97
-97 40 96 42 98
-98 99 41 97 43
-99 44 100 42 98
-100 99 45 101 43
-101 44 100 46 102
-102 45 101 47 103
-103 46 102 48 104
-104 47 103 49 105
-105 48 104 50 106
-106 49 105 51 107
-107 50 106 52 108
-108 51 107 53 109
-109 110 52 108 54
-110 55 111 53 109
-111 110 56 112 54
-112 55 1 111 57
0