[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 112, 3 ] =
C_112(1,41).
(I) Following is a form readable by MAGMA:
g:=Graph<112|{ {2, 3}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102,
103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {42, 43}, {40, 41},
{38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24,
25}, {26, 27}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56,
57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94},
{41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {25, 26}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66},
{69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {107, 108},
{99, 100}, {91, 92}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52},
{59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {39, 40}, {23, 24},
{55, 56}, {71, 72}, {87, 88}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {2, 43},
{4, 45}, {6, 47}, {16, 57}, {18, 59}, {20, 61}, {22, 63}, {64, 105}, {66, 107},
{68, 109}, {70, 111}, {1, 42}, {5, 46}, {17, 58}, {21, 62}, {65, 106}, {69,
110}, {3, 44}, {19, 60}, {67, 108}, {7, 48}, {15, 56}, {71, 112}, {8, 49}, {10,
51}, {12, 53}, {14, 55}, {9, 50}, {13, 54}, {11, 52}, {95, 96}, {31, 32}, {8,
79}, {40, 111}, {32, 103}, {16, 87}, {24, 95}, {1, 72}, {39, 110}, {37, 108},
{35, 106}, {33, 104}, {3, 74}, {5, 76}, {7, 78}, {17, 88}, {19, 90}, {21, 92},
{23, 94}, {2, 73}, {38, 109}, {34, 105}, {6, 77}, {18, 89}, {22, 93}, {4, 75},
{36, 107}, {20, 91}, {23, 64}, {31, 72}, {55, 96}, {63, 104}, {9, 80}, {41,
112}, {30, 71}, {28, 69}, {26, 67}, {11, 82}, {13, 84}, {15, 86}, {24, 65}, {56,
97}, {58, 99}, {60, 101}, {62, 103}, {10, 81}, {29, 70}, {14, 85}, {25, 66},
{57, 98}, {61, 102}, {12, 83}, {27, 68}, {59, 100}, {32, 73}, {38, 79}, {36,
77}, {34, 75}, {48, 89}, {50, 91}, {52, 93}, {54, 95}, {33, 74}, {37, 78}, {49,
90}, {53, 94}, {35, 76}, {51, 92}, {1, 112}, {39, 80}, {47, 88}, {25, 96}, {42,
83}, {40, 81}, {31, 102}, {29, 100}, {27, 98}, {44, 85}, {46, 87}, {26, 97},
{41, 82}, {30, 101}, {45, 86}, {28, 99}, {43, 84}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 72)(3, 31)(4, 102)(5, 61)(6, 20)(7, 91)(8, 50)(10, 80)(11, 39)(12,
110)(13, 69)(14, 28)(15, 99)(16, 58)(18, 88)(19, 47)(21, 77)(22, 36)(23,
107)(24, 66)(26, 96)(27, 55)(29, 85)(30, 44)(32, 74)(34, 104)(35, 63)(37,
93)(38, 52)(40, 82)(42, 112)(43, 71)(45, 101)(46, 60)(48, 90)(51, 79)(53,
109)(54, 68)(56, 98)(59, 87)(62, 76)(64, 106)(67, 95)(70, 84)(75, 103)(78,
92)(83, 111)(86, 100)(94, 108) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 42)(3, 83)(4, 12)(5, 53)(6, 94)(7, 23)(8, 64)(9, 105)(10, 34)(11, 75)(13,
45)(14, 86)(16, 56)(17, 97)(18, 26)(19, 67)(20, 108)(21, 37)(22, 78)(24, 48)(25,
89)(27, 59)(28, 100)(30, 70)(31, 111)(32, 40)(33, 81)(35, 51)(36, 92)(38,
62)(39, 103)(41, 73)(44, 84)(46, 54)(47, 95)(49, 65)(50, 106)(52, 76)(55,
87)(58, 98)(60, 68)(61, 109)(63, 79)(66, 90)(69, 101)(72, 112)(74, 82)(77,
93)(80, 104)(88, 96)(91, 107)(102, 110)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)
C4[ 112, 3 ]
112
-1 2 112 72 42
-2 1 3 73 43
-3 44 2 4 74
-4 45 3 5 75
-5 46 4 6 76
-6 77 47 5 7
-7 78 48 6 8
-8 79 49 7 9
-9 80 50 8 10
-10 11 81 51 9
-11 12 82 52 10
-12 11 13 83 53
-13 12 14 84 54
-14 55 13 15 85
-15 56 14 16 86
-16 57 15 17 87
-17 88 58 16 18
-18 89 59 17 19
-19 90 60 18 20
-20 91 61 19 21
-21 22 92 62 20
-22 23 93 63 21
-23 22 24 94 64
-24 23 25 95 65
-25 66 24 26 96
-26 67 25 27 97
-27 68 26 28 98
-28 99 69 27 29
-29 100 70 28 30
-30 101 71 29 31
-31 102 72 30 32
-32 33 103 73 31
-33 34 104 74 32
-34 33 35 105 75
-35 34 36 106 76
-36 77 35 37 107
-37 78 36 38 108
-38 79 37 39 109
-39 110 80 38 40
-40 111 81 39 41
-41 112 82 40 42
-42 1 83 41 43
-43 44 2 84 42
-44 45 3 85 43
-45 44 46 4 86
-46 45 47 5 87
-47 88 46 48 6
-48 89 47 49 7
-49 90 48 50 8
-50 91 49 51 9
-51 92 50 52 10
-52 11 93 51 53
-53 12 94 52 54
-54 55 13 95 53
-55 56 14 96 54
-56 55 57 15 97
-57 56 58 16 98
-58 99 57 59 17
-59 100 58 60 18
-60 101 59 61 19
-61 102 60 62 20
-62 103 61 63 21
-63 22 104 62 64
-64 23 105 63 65
-65 66 24 106 64
-66 67 25 107 65
-67 66 68 26 108
-68 67 69 27 109
-69 110 68 70 28
-70 111 69 71 29
-71 112 70 72 30
-72 1 71 73 31
-73 2 72 74 32
-74 33 3 73 75
-75 34 4 74 76
-76 77 35 5 75
-77 78 36 6 76
-78 77 79 37 7
-79 78 80 38 8
-80 79 81 39 9
-81 80 82 40 10
-82 11 81 83 41
-83 12 82 84 42
-84 13 83 85 43
-85 44 14 84 86
-86 45 15 85 87
-87 88 46 16 86
-88 89 47 17 87
-89 88 90 48 18
-90 89 91 49 19
-91 90 92 50 20
-92 91 93 51 21
-93 22 92 94 52
-94 23 93 95 53
-95 24 94 96 54
-96 55 25 95 97
-97 56 26 96 98
-98 99 57 27 97
-99 100 58 28 98
-100 99 101 59 29
-101 100 102 60 30
-102 101 103 61 31
-103 102 104 62 32
-104 33 103 105 63
-105 34 104 106 64
-106 35 105 107 65
-107 66 36 106 108
-108 67 37 107 109
-109 110 68 38 108
-110 111 69 39 109
-111 110 112 70 40
-112 1 111 71 41
0