[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 112, 4 ] =
{4,4}_[14,4].
(I) Following is a form readable by MAGMA:
g:=Graph<112|{ {2, 3}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102,
103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {40, 41},
{38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54,
55}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90},
{41, 42}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66},
{69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {3, 4}, {107, 108}, {99, 100},
{91, 92}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60},
{67, 68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56},
{71, 72}, {87, 88}, {32, 62}, {33, 63}, {15, 16}, {111, 112}, {47, 48}, {79,
80}, {27, 57}, {31, 61}, {30, 60}, {28, 58}, {29, 59}, {1, 57}, {2, 58}, {3,
59}, {4, 60}, {5, 61}, {6, 62}, {7, 63}, {1, 56}, {31, 32}, {95, 96}, {8, 64},
{40, 96}, {31, 87}, {30, 86}, {29, 85}, {28, 84}, {27, 83}, {26, 82}, {25, 81},
{9, 65}, {10, 66}, {11, 67}, {12, 68}, {13, 69}, {14, 70}, {15, 71}, {24, 80},
{41, 97}, {42, 98}, {43, 99}, {44, 100}, {45, 101}, {46, 102}, {47, 103}, {56,
112}, {57, 112}, {1, 87}, {8, 94}, {9, 95}, {16, 72}, {17, 73}, {18, 74}, {19,
75}, {20, 76}, {21, 77}, {22, 78}, {23, 79}, {48, 104}, {49, 105}, {50, 106},
{51, 107}, {52, 108}, {53, 109}, {54, 110}, {55, 111}, {2, 88}, {3, 89}, {6,
92}, {7, 93}, {4, 90}, {5, 91}, {34, 64}, {39, 69}, {38, 68}, {35, 65}, {42,
72}, {43, 73}, {46, 76}, {47, 77}, {50, 80}, {51, 81}, {54, 84}, {55, 85}, {36,
66}, {37, 67}, {44, 74}, {45, 75}, {52, 82}, {53, 83}, {10, 96}, {26, 112}, {11,
97}, {14, 100}, {15, 101}, {12, 98}, {40, 70}, {13, 99}, {41, 71}, {56, 86},
{16, 102}, {25, 111}, {24, 110}, {17, 103}, {32, 88}, {39, 95}, {38, 94}, {37,
93}, {36, 92}, {35, 91}, {34, 90}, {33, 89}, {18, 104}, {19, 105}, {22, 108},
{23, 109}, {20, 106}, {21, 107}, {48, 78}, {49, 79}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 56)(3, 55)(4, 54)(5, 53)(6, 52)(7, 51)(8, 50)(9, 49)(10, 48)(11, 47)(12,
46)(13, 45)(14, 44)(15, 43)(16, 42)(17, 41)(18, 40)(19, 39)(20, 38)(21, 37)(22,
36)(23, 35)(24, 34)(25, 33)(26, 32)(27, 31)(28, 30)(57, 87)(58, 86)(59, 85)(60,
84)(61, 83)(62, 82)(63, 81)(64, 80)(65, 79)(66, 78)(67, 77)(68, 76)(69, 75)(70,
74)(71, 73)(88, 112)(89, 111)(90, 110)(91, 109)(92, 108)(93, 107)(94, 106)(95,
105)(96, 104)(97, 103)(98, 102)(99, 101) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 87)(3, 31)(4, 61)(6, 91)(7, 35)(8, 65)(10, 95)(11, 39)(12, 69)(14,
99)(15, 43)(16, 73)(18, 103)(19, 47)(20, 77)(22, 107)(23, 51)(24, 81)(26,
111)(27, 55)(28, 85)(30, 59)(32, 89)(34, 63)(36, 93)(38, 67)(40, 97)(42, 71)(44,
101)(46, 75)(48, 105)(50, 79)(52, 109)(54, 83)(56, 57)(58, 86)(62, 90)(66,
94)(70, 98)(74, 102)(78, 106)(82, 110)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56)(57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)
C4[ 112, 4 ]
112
-1 56 2 57 87
-2 88 1 3 58
-3 89 2 4 59
-4 90 3 5 60
-5 91 4 6 61
-6 92 5 7 62
-7 93 6 8 63
-8 94 7 9 64
-9 95 8 10 65
-10 11 66 96 9
-11 12 67 97 10
-12 11 13 68 98
-13 99 12 14 69
-14 100 13 15 70
-15 101 14 16 71
-16 102 15 17 72
-17 103 16 18 73
-18 104 17 19 74
-19 105 18 20 75
-20 106 19 21 76
-21 22 77 107 20
-22 23 78 108 21
-23 22 24 79 109
-24 110 23 25 80
-25 111 24 26 81
-26 112 25 27 82
-27 57 26 28 83
-28 58 27 29 84
-29 59 28 30 85
-30 60 29 31 86
-31 61 30 32 87
-32 33 88 62 31
-33 34 89 63 32
-34 33 35 90 64
-35 34 36 91 65
-36 66 35 37 92
-37 67 36 38 93
-38 68 37 39 94
-39 69 38 40 95
-40 70 39 41 96
-41 71 40 42 97
-42 72 41 43 98
-43 44 99 73 42
-44 45 100 74 43
-45 44 46 101 75
-46 45 47 102 76
-47 77 46 48 103
-48 78 47 49 104
-49 79 48 50 105
-50 80 49 51 106
-51 81 50 52 107
-52 82 51 53 108
-53 83 52 54 109
-54 55 110 84 53
-55 56 111 85 54
-56 55 1 112 86
-57 1 112 58 27
-58 2 57 59 28
-59 3 58 60 29
-60 4 59 61 30
-61 5 60 62 31
-62 6 61 63 32
-63 33 7 62 64
-64 34 8 63 65
-65 66 35 9 64
-66 67 36 10 65
-67 11 66 68 37
-68 12 67 69 38
-69 13 68 70 39
-70 14 69 71 40
-71 15 70 72 41
-72 16 71 73 42
-73 17 72 74 43
-74 44 18 73 75
-75 45 19 74 76
-76 77 46 20 75
-77 78 47 21 76
-78 22 77 79 48
-79 23 78 80 49
-80 24 79 81 50
-81 25 80 82 51
-82 26 81 83 52
-83 27 82 84 53
-84 28 83 85 54
-85 55 29 84 86
-86 56 30 85 87
-87 88 1 31 86
-88 89 2 32 87
-89 33 88 90 3
-90 34 89 91 4
-91 35 90 92 5
-92 36 91 93 6
-93 37 92 94 7
-94 38 93 95 8
-95 39 94 96 9
-96 40 95 97 10
-97 11 41 96 98
-98 99 12 42 97
-99 100 13 43 98
-100 44 99 101 14
-101 45 100 102 15
-102 46 101 103 16
-103 47 102 104 17
-104 48 103 105 18
-105 49 104 106 19
-106 50 105 107 20
-107 51 106 108 21
-108 22 52 107 109
-109 110 23 53 108
-110 111 24 54 109
-111 55 110 112 25
-112 56 111 57 26
0