[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 112, 12 ] =
SDD(BC_14(0,1,4,6)).
(I) Following is a form readable by MAGMA:
g:=Graph<112|{ {28, 63}, {27, 63}, {26, 63}, {24, 62}, {25, 63}, {22, 62}, {20,
61}, {23, 62}, {21, 62}, {16, 60}, {17, 61}, {19, 61}, {18, 61}, {11, 59}, {10,
59}, {13, 60}, {8, 58}, {14, 60}, {9, 59}, {15, 60}, {12, 59}, {1, 57}, {3, 57},
{2, 57}, {6, 58}, {4, 57}, {7, 58}, {5, 58}, {9, 73}, {27, 91}, {16, 80}, {10,
74}, {15, 78}, {47, 110}, {29, 92}, {26, 91}, {37, 100}, {24, 90}, {30, 92},
{25, 91}, {33, 99}, {44, 110}, {12, 79}, {31, 92}, {52, 112}, {14, 75}, {20,
81}, {1, 71}, {11, 77}, {8, 78}, {43, 109}, {13, 74}, {28, 91}, {23, 80}, {3,
75}, {56, 112}, {46, 102}, {17, 89}, {16, 88}, {4, 77}, {45, 100}, {34, 107},
{2, 72}, {27, 81}, {24, 82}, {19, 89}, {38, 108}, {39, 109}, {41, 99}, {7, 76},
{18, 89}, {36, 111}, {22, 90}, {5, 72}, {31, 82}, {23, 90}, {20, 89}, {45, 96},
{46, 96}, {6, 73}, {47, 96}, {28, 83}, {21, 90}, {35, 108}, {42, 101}, {6, 86},
{54, 102}, {49, 97}, {48, 96}, {32, 112}, {4, 85}, {30, 79}, {7, 86}, {51, 97},
{5, 86}, {50, 97}, {29, 78}, {1, 85}, {54, 98}, {49, 101}, {26, 78}, {25, 77},
{13, 88}, {55, 98}, {52, 97}, {50, 103}, {3, 85}, {53, 99}, {14, 88}, {2, 85},
{53, 98}, {15, 88}, {40, 112}, {21, 76}, {17, 75}, {56, 98}, {12, 87}, {22, 77},
{11, 87}, {51, 111}, {19, 79}, {10, 87}, {29, 64}, {8, 86}, {30, 64}, {18, 76},
{9, 87}, {31, 64}, {55, 104}, {48, 111}, {32, 64}, {52, 84}, {51, 83}, {33, 65},
{5, 100}, {1, 99}, {11, 105}, {8, 106}, {35, 65}, {6, 101}, {48, 83}, {34, 65},
{42, 73}, {3, 103}, {46, 74}, {38, 66}, {15, 106}, {36, 65}, {39, 66}, {45, 72},
{2, 100}, {33, 71}, {12, 107}, {37, 66}, {43, 67}, {14, 103}, {42, 67}, {45,
68}, {40, 66}, {46, 68}, {41, 67}, {13, 102}, {47, 68}, {9, 101}, {56, 84}, {10,
102}, {4, 105}, {34, 79}, {37, 72}, {41, 71}, {7, 104}, {44, 67}, {25, 105},
{54, 70}, {26, 106}, {31, 110}, {55, 70}, {52, 69}, {53, 71}, {28, 111}, {53,
70}, {35, 80}, {44, 95}, {32, 84}, {49, 69}, {48, 68}, {43, 95}, {30, 107}, {42,
95}, {17, 103}, {51, 69}, {27, 109}, {24, 110}, {38, 80}, {39, 81}, {40, 94},
{41, 95}, {29, 106}, {50, 69}, {36, 83}, {19, 107}, {49, 73}, {38, 94}, {20,
109}, {50, 75}, {36, 93}, {39, 94}, {18, 104}, {43, 81}, {23, 108}, {55, 76},
{37, 94}, {16, 108}, {54, 74}, {33, 93}, {32, 92}, {40, 84}, {21, 104}, {47,
82}, {35, 93}, {56, 70}, {44, 82}, {22, 105}, {34, 93} }>;
(II) A more general form is to represent the graph as the orbit of {28, 63}
under the group generated by the following permutations:
a: (76, 104) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (74, 102)
c: (67, 95)
d: (82, 110)
e: (68, 96)
f: (80, 108)
g: (78, 106)
h: (71, 99)
m: (62, 90)
n1: (60, 88)
a1: (61, 89)
b1: (63, 91)
c1: (81, 109)
d1: (70, 98)
e1: (75, 103)
f1: (3, 4)(6, 7)(9, 18)(10, 20)(11, 17)(12, 19)(13, 27)(14, 25)(15, 26)(16,
28)(21, 49)(22, 50)(23, 51)(24, 52)(31, 32)(35, 36)(37, 45)(38, 48)(39, 46)(40,
47)(41, 53)(42, 55)(43, 54)(44, 56)(59, 61)(60, 63)(62, 69)(66, 68)(67, 70)(73,
76)(74, 81)(75, 77)(80, 83)(82, 84)(87, 89)(88, 91)(90, 97)(94, 96)(95, 98)(101,
104)(102, 109)(103, 105)(108, 111)(110, 112)
g1: (73, 101)
h1: (72, 100)
m1: (79, 107)
n2: (57, 85)
a2: (83, 111)
b2: (69, 97)
c2: (65, 93)
d2: (77, 105)
e2: (1, 2)(3, 4)(5, 33)(6, 35)(7, 36)(8, 34)(9, 16)(10, 13)(11, 14)(12, 15)(17,
25)(18, 28)(19, 26)(20, 27)(21, 51)(22, 50)(23, 49)(24, 52)(29, 30)(31, 32)(37,
41)(38, 42)(39, 43)(40, 44)(45, 53)(46, 54)(47, 56)(48, 55)(58, 65)(59, 60)(61,
63)(62, 69)(66, 67)(68, 70)(71, 72)(73, 80)(75, 77)(76, 83)(78, 79)(82, 84)(86,
93)(87, 88)(89, 91)(90, 97)(94, 95)(96, 98)(99, 100)(101, 108)(103, 105)(104,
111)(106, 107)(110, 112)
f2: (64, 92)
g2: (58, 86)
h2: (66, 94)
m2: (2, 33)(3, 53)(4, 41)(5, 34)(6, 12)(7, 19)(8, 30)(10, 49)(11, 42)(13,
52)(14, 56)(15, 32)(16, 40)(17, 55)(20, 21)(22, 43)(23, 39)(24, 27)(25, 44)(26,
31)(28, 47)(35, 37)(36, 45)(46, 51)(50, 54)(57, 71)(58, 79)(59, 73)(60, 84)(61,
76)(62, 81)(63, 82)(64, 78)(65, 72)(66, 80)(67, 77)(68, 83)(69, 74)(70, 75)(85,
99)(86, 107)(87, 101)(88, 112)(89, 104)(90, 109)(91, 110)(92, 106)(93, 100)(94,
108)(95, 105)(96, 111)(97, 102)(98, 103)
n3: (2, 3)(5, 14)(6, 16)(7, 13)(8, 15)(9, 23)(10, 21)(11, 22)(12, 24)(17,
45)(18, 46)(19, 47)(20, 48)(27, 28)(30, 31)(33, 41)(34, 44)(35, 42)(36, 43)(37,
50)(38, 49)(39, 51)(40, 52)(54, 55)(58, 60)(59, 62)(61, 68)(65, 67)(66, 69)(72,
75)(73, 80)(74, 76)(79, 82)(81, 83)(86, 88)(87, 90)(89, 96)(93, 95)(94, 97)(100,
103)(101, 108)(102, 104)(107, 110)(109, 111)
a3: (84, 112)
C4[ 112, 12 ]
112
-1 99 57 71 85
-2 100 57 72 85
-3 57 103 85 75
-4 77 57 105 85
-5 100 58 72 86
-6 101 58 73 86
-7 58 104 86 76
-8 78 58 106 86
-9 101 59 73 87
-10 102 59 74 87
-11 77 59 105 87
-12 79 59 107 87
-13 88 102 60 74
-14 88 103 60 75
-15 88 78 60 106
-16 88 80 60 108
-17 89 103 61 75
-18 89 104 61 76
-19 89 79 61 107
-20 89 81 61 109
-21 90 104 62 76
-22 77 90 105 62
-23 90 80 62 108
-24 110 90 82 62
-25 77 91 105 63
-26 78 91 106 63
-27 91 81 63 109
-28 111 91 83 63
-29 78 92 106 64
-30 79 92 107 64
-31 110 92 82 64
-32 112 92 84 64
-33 99 71 93 65
-34 79 93 107 65
-35 80 93 108 65
-36 111 93 83 65
-37 66 100 72 94
-38 66 80 94 108
-39 66 81 94 109
-40 66 112 94 84
-41 99 67 71 95
-42 67 101 73 95
-43 67 81 95 109
-44 110 67 82 95
-45 100 68 72 96
-46 68 102 74 96
-47 110 68 82 96
-48 111 68 83 96
-49 101 69 73 97
-50 69 103 75 97
-51 111 69 83 97
-52 112 69 84 97
-53 99 70 71 98
-54 102 70 74 98
-55 70 104 76 98
-56 112 70 84 98
-57 1 2 3 4
-58 5 6 7 8
-59 11 12 9 10
-60 13 14 15 16
-61 17 18 19 20
-62 22 23 24 21
-63 25 26 27 28
-64 29 30 31 32
-65 33 34 35 36
-66 37 38 39 40
-67 44 41 42 43
-68 45 46 47 48
-69 49 50 51 52
-70 55 56 53 54
-71 33 1 41 53
-72 45 2 37 5
-73 49 6 9 42
-74 13 46 10 54
-75 3 14 17 50
-76 55 7 18 21
-77 11 22 25 4
-78 15 26 29 8
-79 12 34 19 30
-80 23 35 16 38
-81 27 39 20 43
-82 44 24 47 31
-83 36 48 28 51
-84 56 40 52 32
-85 1 2 3 4
-86 5 6 7 8
-87 11 12 9 10
-88 13 14 15 16
-89 17 18 19 20
-90 22 23 24 21
-91 25 26 27 28
-92 29 30 31 32
-93 33 34 35 36
-94 37 38 39 40
-95 44 41 42 43
-96 45 46 47 48
-97 49 50 51 52
-98 55 56 53 54
-99 33 1 41 53
-100 45 2 37 5
-101 49 6 9 42
-102 13 46 10 54
-103 3 14 17 50
-104 55 7 18 21
-105 11 22 25 4
-106 15 26 29 8
-107 12 34 19 30
-108 23 35 16 38
-109 27 39 20 43
-110 44 24 47 31
-111 36 48 28 51
-112 56 40 52 32
0