C4graphGraph forms for C4 [ 113, 1 ] = C_113(1,15)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 113, 1 ] = C_113(1,15).

(I) Following is a form readable by MAGMA:

g:=Graph<113|{ {2, 3}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {1, 2}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {107, 108}, {99, 100}, {91, 92}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {96, 111}, {48, 63}, {39, 40}, {32, 47}, {16, 31}, {23, 24}, {55, 56}, {64, 79}, {71, 72}, {80, 95}, {87, 88}, {1, 16}, {97, 112}, {47, 62}, {45, 60}, {43, 58}, {41, 56}, {39, 54}, {37, 52}, {35, 50}, {33, 48}, {3, 18}, {5, 20}, {7, 22}, {9, 24}, {11, 26}, {13, 28}, {15, 30}, {65, 80}, {67, 82}, {69, 84}, {71, 86}, {73, 88}, {75, 90}, {77, 92}, {79, 94}, {2, 17}, {98, 113}, {46, 61}, {42, 57}, {38, 53}, {34, 49}, {6, 21}, {10, 25}, {14, 29}, {66, 81}, {70, 85}, {74, 89}, {78, 93}, {4, 19}, {44, 59}, {36, 51}, {12, 27}, {68, 83}, {76, 91}, {8, 23}, {111, 112}, {47, 48}, {40, 55}, {15, 16}, {72, 87}, {79, 80}, {17, 32}, {95, 110}, {93, 108}, {91, 106}, {31, 46}, {29, 44}, {19, 34}, {21, 36}, {23, 38}, {25, 40}, {27, 42}, {81, 96}, {83, 98}, {85, 100}, {87, 102}, {89, 104}, {18, 33}, {94, 109}, {30, 45}, {22, 37}, {26, 41}, {82, 97}, {86, 101}, {90, 105}, {20, 35}, {92, 107}, {28, 43}, {84, 99}, {24, 39}, {95, 96}, {31, 32}, {88, 103}, {1, 99}, {4, 102}, {5, 103}, {8, 106}, {9, 107}, {12, 110}, {13, 111}, {2, 100}, {3, 101}, {10, 108}, {11, 109}, {6, 104}, {7, 105}, {1, 113}, {49, 64}, {51, 66}, {53, 68}, {55, 70}, {57, 72}, {59, 74}, {61, 76}, {63, 78}, {50, 65}, {54, 69}, {58, 73}, {62, 77}, {52, 67}, {60, 75}, {14, 112}, {15, 113}, {56, 71}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 99, 113, 16)(3, 84, 112, 31)(4, 69, 111, 46)(5, 54, 110, 61)(6, 39, 109, 76)(7, 24, 108, 91)(8, 9, 107, 106)(10, 92, 105, 23)(11, 77, 104, 38)(12, 62, 103, 53)(13, 47, 102, 68)(14, 32, 101, 83)(15, 17, 100, 98)(18, 85, 97, 30)(19, 70, 96, 45)(20, 55, 95, 60)(21, 40, 94, 75)(22, 25, 93, 90)(26, 78, 89, 37)(27, 63, 88, 52)(28, 48, 87, 67)(29, 33, 86, 82)(34, 71, 81, 44)(35, 56, 80, 59)(36, 41, 79, 74)(42, 64, 73, 51)(43, 49, 72, 66)(50, 57, 65, 58)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 113, 1 ]
113
-1 99 2 113 16
-2 1 100 3 17
-3 2 101 4 18
-4 3 102 5 19
-5 4 103 6 20
-6 5 104 7 21
-7 22 6 105 8
-8 23 7 106 9
-9 24 8 107 10
-10 11 25 9 108
-11 12 26 10 109
-12 11 110 13 27
-13 12 111 14 28
-14 13 112 15 29
-15 14 113 16 30
-16 1 15 17 31
-17 2 16 18 32
-18 33 3 17 19
-19 34 4 18 20
-20 35 5 19 21
-21 22 36 6 20
-22 23 37 7 21
-23 22 24 38 8
-24 23 25 39 9
-25 24 26 40 10
-26 11 25 27 41
-27 12 26 28 42
-28 13 27 29 43
-29 44 14 28 30
-30 45 15 29 31
-31 46 16 30 32
-32 33 47 17 31
-33 34 48 18 32
-34 33 35 49 19
-35 34 36 50 20
-36 35 37 51 21
-37 22 36 38 52
-38 23 37 39 53
-39 24 38 40 54
-40 55 25 39 41
-41 56 26 40 42
-42 57 27 41 43
-43 44 58 28 42
-44 45 59 29 43
-45 44 46 60 30
-46 45 47 61 31
-47 46 48 62 32
-48 33 47 49 63
-49 34 48 50 64
-50 35 49 51 65
-51 66 36 50 52
-52 67 37 51 53
-53 68 38 52 54
-54 55 69 39 53
-55 56 70 40 54
-56 55 57 71 41
-57 56 58 72 42
-58 57 59 73 43
-59 44 58 60 74
-60 45 59 61 75
-61 46 60 62 76
-62 77 47 61 63
-63 78 48 62 64
-64 79 49 63 65
-65 66 80 50 64
-66 67 81 51 65
-67 66 68 82 52
-68 67 69 83 53
-69 68 70 84 54
-70 55 69 71 85
-71 56 70 72 86
-72 57 71 73 87
-73 88 58 72 74
-74 89 59 73 75
-75 90 60 74 76
-76 77 91 61 75
-77 78 92 62 76
-78 77 79 93 63
-79 78 80 94 64
-80 79 81 95 65
-81 66 80 82 96
-82 67 81 83 97
-83 68 82 84 98
-84 99 69 83 85
-85 100 70 84 86
-86 101 71 85 87
-87 88 102 72 86
-88 89 103 73 87
-89 88 90 104 74
-90 89 91 105 75
-91 90 92 106 76
-92 77 91 93 107
-93 78 92 94 108
-94 79 93 95 109
-95 110 80 94 96
-96 111 81 95 97
-97 112 82 96 98
-98 99 113 83 97
-99 1 100 84 98
-100 99 2 101 85
-101 100 3 102 86
-102 101 4 103 87
-103 88 102 5 104
-104 89 103 6 105
-105 90 104 7 106
-106 91 105 8 107
-107 92 106 9 108
-108 93 107 10 109
-109 11 110 94 108
-110 12 111 95 109
-111 110 13 112 96
-112 111 14 113 97
-113 1 112 15 98
0

**************