[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 114, 2 ] =
C_114(1,37).
(I) Following is a form readable by MAGMA:
g:=Graph<114|{ {2, 3}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104,
105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {46, 47}, {44, 45},
{42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56,
57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {1, 2}, {113, 114}, {109, 110}, {105, 106}, {101, 102},
{97, 98}, {93, 94}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6},
{9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {49, 50}, {53, 54}, {57, 58},
{61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90},
{3, 4}, {107, 108}, {99, 100}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28},
{51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {103, 104},
{39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {111, 112}, {47,
48}, {79, 80}, {2, 39}, {8, 45}, {10, 47}, {16, 53}, {18, 55}, {24, 61}, {26,
63}, {64, 101}, {66, 103}, {72, 109}, {74, 111}, {1, 38}, {9, 46}, {17, 54},
{25, 62}, {65, 102}, {73, 110}, {3, 40}, {7, 44}, {19, 56}, {23, 60}, {67, 104},
{71, 108}, {4, 41}, {6, 43}, {20, 57}, {22, 59}, {68, 105}, {70, 107}, {5, 42},
{21, 58}, {69, 106}, {11, 48}, {15, 52}, {75, 112}, {12, 49}, {14, 51}, {76,
113}, {13, 50}, {95, 96}, {31, 32}, {77, 114}, {2, 79}, {34, 111}, {32, 109},
{16, 93}, {18, 95}, {1, 78}, {33, 110}, {17, 94}, {3, 80}, {35, 112}, {7, 84},
{11, 88}, {15, 92}, {4, 81}, {36, 113}, {6, 83}, {12, 89}, {14, 91}, {5, 82},
{37, 114}, {13, 90}, {27, 64}, {31, 68}, {59, 96}, {63, 100}, {8, 85}, {30, 67},
{28, 65}, {10, 87}, {60, 97}, {62, 99}, {9, 86}, {29, 66}, {61, 98}, {32, 69},
{42, 79}, {40, 77}, {34, 71}, {48, 85}, {50, 87}, {56, 93}, {58, 95}, {33, 70},
{41, 78}, {49, 86}, {57, 94}, {35, 72}, {39, 76}, {51, 88}, {55, 92}, {36, 73},
{38, 75}, {52, 89}, {54, 91}, {37, 74}, {53, 90}, {1, 114}, {31, 108}, {27,
104}, {19, 96}, {23, 100}, {20, 97}, {30, 107}, {28, 105}, {22, 99}, {21, 98},
{29, 106}, {43, 80}, {47, 84}, {24, 101}, {46, 83}, {44, 81}, {26, 103}, {25,
102}, {45, 82}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 38)(3, 75)(4, 112)(5, 35)(6, 72)(7, 109)(8, 32)(9, 69)(10, 106)(11,
29)(12, 66)(13, 103)(14, 26)(15, 63)(16, 100)(17, 23)(18, 60)(19, 97)(21,
57)(22, 94)(24, 54)(25, 91)(27, 51)(28, 88)(30, 48)(31, 85)(33, 45)(34, 82)(36,
42)(37, 79)(40, 76)(41, 113)(43, 73)(44, 110)(46, 70)(47, 107)(49, 67)(50,
104)(52, 64)(53, 101)(55, 61)(56, 98)(59, 95)(62, 92)(65, 89)(68, 86)(71,
83)(74, 80)(78, 114)(81, 111)(84, 108)(87, 105)(90, 102)(93, 99) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 78)(3, 41)(5, 81)(6, 44)(8, 84)(9, 47)(11, 87)(12, 50)(14, 90)(15,
53)(17, 93)(18, 56)(20, 96)(21, 59)(23, 99)(24, 62)(26, 102)(27, 65)(29,
105)(30, 68)(32, 108)(33, 71)(35, 111)(36, 74)(38, 114)(39, 77)(42, 80)(45,
83)(48, 86)(51, 89)(54, 92)(57, 95)(60, 98)(63, 101)(66, 104)(69, 107)(72,
110)(75, 113)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114)
C4[ 114, 2 ]
114
-1 78 2 114 38
-2 1 79 3 39
-3 2 80 4 40
-4 3 81 5 41
-5 4 82 6 42
-6 5 83 7 43
-7 44 6 84 8
-8 45 7 85 9
-9 46 8 86 10
-10 11 47 9 87
-11 88 12 48 10
-12 11 89 13 49
-13 12 90 14 50
-14 13 91 15 51
-15 14 92 16 52
-16 15 93 17 53
-17 16 94 18 54
-18 55 17 95 19
-19 56 18 96 20
-20 57 19 97 21
-21 22 58 20 98
-22 99 23 59 21
-23 22 100 24 60
-24 23 101 25 61
-25 24 102 26 62
-26 25 103 27 63
-27 26 104 28 64
-28 27 105 29 65
-29 66 28 106 30
-30 67 29 107 31
-31 68 30 108 32
-32 33 69 31 109
-33 110 34 70 32
-34 33 111 35 71
-35 34 112 36 72
-36 35 113 37 73
-37 36 114 38 74
-38 1 37 39 75
-39 2 38 40 76
-40 77 3 39 41
-41 78 4 40 42
-42 79 5 41 43
-43 44 80 6 42
-44 45 81 7 43
-45 44 46 82 8
-46 45 47 83 9
-47 46 48 84 10
-48 11 47 49 85
-49 12 48 50 86
-50 13 49 51 87
-51 88 14 50 52
-52 89 15 51 53
-53 90 16 52 54
-54 55 91 17 53
-55 56 92 18 54
-56 55 57 93 19
-57 56 58 94 20
-58 57 59 95 21
-59 22 58 60 96
-60 23 59 61 97
-61 24 60 62 98
-62 99 25 61 63
-63 100 26 62 64
-64 101 27 63 65
-65 66 102 28 64
-66 67 103 29 65
-67 66 68 104 30
-68 67 69 105 31
-69 68 70 106 32
-70 33 69 71 107
-71 34 70 72 108
-72 35 71 73 109
-73 110 36 72 74
-74 111 37 73 75
-75 112 38 74 76
-76 77 113 39 75
-77 78 114 40 76
-78 77 1 79 41
-79 78 2 80 42
-80 79 3 81 43
-81 44 80 4 82
-82 45 81 5 83
-83 46 82 6 84
-84 47 83 7 85
-85 48 84 8 86
-86 49 85 9 87
-87 88 50 86 10
-88 11 89 51 87
-89 88 12 90 52
-90 89 13 91 53
-91 90 14 92 54
-92 55 91 15 93
-93 56 92 16 94
-94 57 93 17 95
-95 58 94 18 96
-96 59 95 19 97
-97 60 96 20 98
-98 99 61 97 21
-99 22 100 62 98
-100 99 23 101 63
-101 100 24 102 64
-102 101 25 103 65
-103 66 102 26 104
-104 67 103 27 105
-105 68 104 28 106
-106 69 105 29 107
-107 70 106 30 108
-108 71 107 31 109
-109 110 72 108 32
-110 33 111 73 109
-111 110 34 112 74
-112 111 35 113 75
-113 112 36 114 76
-114 77 1 113 37
0