[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 115, 1 ] =
C_115(1,24).
(I) Following is a form readable by MAGMA:
g:=Graph<115|{ {2, 3}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106,
107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92,
93}, {90, 91}, {88, 89}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38,
39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7},
{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23},
{24, 25}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63},
{64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {84, 85}, {86, 87}, {1, 2}, {113, 114}, {109, 110}, {105,
106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {45, 46}, {41, 42}, {37, 38},
{33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78},
{81, 82}, {85, 86}, {3, 4}, {107, 108}, {99, 100}, {91, 92}, {43, 44}, {35, 36},
{27, 28}, {11, 12}, {19, 20}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84},
{7, 8}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {1, 25},
{39, 63}, {38, 62}, {37, 61}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {32, 56},
{2, 26}, {3, 27}, {4, 28}, {5, 29}, {6, 30}, {7, 31}, {64, 88}, {65, 89}, {66,
90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {15, 16}, {111, 112},
{47, 48}, {79, 80}, {8, 32}, {91, 115}, {90, 114}, {89, 113}, {88, 112}, {31,
55}, {30, 54}, {29, 53}, {28, 52}, {27, 51}, {26, 50}, {9, 33}, {10, 34}, {11,
35}, {12, 36}, {13, 37}, {14, 38}, {15, 39}, {24, 48}, {25, 49}, {72, 96}, {73,
97}, {74, 98}, {75, 99}, {76, 100}, {77, 101}, {78, 102}, {79, 103}, {16, 40},
{87, 111}, {17, 41}, {18, 42}, {19, 43}, {20, 44}, {21, 45}, {22, 46}, {23, 47},
{80, 104}, {81, 105}, {82, 106}, {83, 107}, {84, 108}, {85, 109}, {86, 110},
{31, 32}, {95, 96}, {4, 95}, {1, 92}, {3, 94}, {2, 93}, {5, 96}, {7, 98}, {13,
104}, {15, 106}, {21, 112}, {23, 114}, {6, 97}, {14, 105}, {22, 113}, {40, 64},
{47, 71}, {46, 70}, {45, 69}, {44, 68}, {43, 67}, {42, 66}, {41, 65}, {56, 80},
{57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {62, 86}, {63, 87}, {8, 99},
{12, 103}, {24, 115}, {9, 100}, {11, 102}, {10, 101}, {1, 115}, {48, 72}, {49,
73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {16, 107}, {20,
111}, {17, 108}, {19, 110}, {18, 109}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 25)(3, 49)(4, 73)(5, 97)(7, 30)(8, 54)(9, 78)(10, 102)(12, 35)(13,
59)(14, 83)(15, 107)(17, 40)(18, 64)(19, 88)(20, 112)(22, 45)(23, 69)(24,
93)(27, 50)(28, 74)(29, 98)(32, 55)(33, 79)(34, 103)(37, 60)(38, 84)(39,
108)(42, 65)(43, 89)(44, 113)(47, 70)(48, 94)(52, 75)(53, 99)(57, 80)(58,
104)(62, 85)(63, 109)(67, 90)(68, 114)(72, 95)(77, 100)(82, 105)(87, 110)(92,
115) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 92)(3, 68)(4, 44)(5, 20)(6, 111)(7, 87)(8, 63)(9, 39)(10, 15)(11,
106)(12, 82)(13, 58)(14, 34)(16, 101)(17, 77)(18, 53)(19, 29)(21, 96)(22,
72)(23, 48)(25, 115)(26, 91)(27, 67)(28, 43)(30, 110)(31, 86)(32, 62)(33,
38)(35, 105)(36, 81)(37, 57)(40, 100)(41, 76)(42, 52)(45, 95)(46, 71)(49,
114)(50, 90)(51, 66)(54, 109)(55, 85)(56, 61)(59, 104)(60, 80)(64, 99)(65,
75)(69, 94)(73, 113)(74, 89)(78, 108)(79, 84)(83, 103)(88, 98)(97, 112)(102,
107)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115)
C4[ 115, 1 ]
115
-1 2 25 92 115
-2 1 3 26 93
-3 2 4 27 94
-4 3 5 28 95
-5 4 6 29 96
-6 5 7 30 97
-7 6 8 31 98
-8 99 7 9 32
-9 33 100 8 10
-10 11 34 101 9
-11 12 35 102 10
-12 11 13 36 103
-13 12 14 37 104
-14 13 15 38 105
-15 14 16 39 106
-16 15 17 40 107
-17 16 18 41 108
-18 17 19 42 109
-19 110 18 20 43
-20 44 111 19 21
-21 22 45 112 20
-22 23 46 113 21
-23 22 24 47 114
-24 23 25 48 115
-25 1 24 26 49
-26 2 25 27 50
-27 3 26 28 51
-28 4 27 29 52
-29 5 28 30 53
-30 6 29 31 54
-31 55 7 30 32
-32 33 56 8 31
-33 34 57 9 32
-34 33 35 58 10
-35 11 34 36 59
-36 12 35 37 60
-37 13 36 38 61
-38 14 37 39 62
-39 15 38 40 63
-40 16 39 41 64
-41 17 40 42 65
-42 66 18 41 43
-43 44 67 19 42
-44 45 68 20 43
-45 44 46 69 21
-46 22 45 47 70
-47 23 46 48 71
-48 24 47 49 72
-49 25 48 50 73
-50 26 49 51 74
-51 27 50 52 75
-52 28 51 53 76
-53 77 29 52 54
-54 55 78 30 53
-55 56 79 31 54
-56 55 57 80 32
-57 33 56 58 81
-58 34 57 59 82
-59 35 58 60 83
-60 36 59 61 84
-61 37 60 62 85
-62 38 61 63 86
-63 39 62 64 87
-64 88 40 63 65
-65 66 89 41 64
-66 67 90 42 65
-67 66 68 91 43
-68 44 67 69 92
-69 45 68 70 93
-70 46 69 71 94
-71 47 70 72 95
-72 48 71 73 96
-73 49 72 74 97
-74 50 73 75 98
-75 99 51 74 76
-76 77 100 52 75
-77 78 101 53 76
-78 77 79 102 54
-79 55 78 80 103
-80 56 79 81 104
-81 57 80 82 105
-82 58 81 83 106
-83 59 82 84 107
-84 60 83 85 108
-85 61 84 86 109
-86 110 62 85 87
-87 88 111 63 86
-88 89 112 64 87
-89 88 90 113 65
-90 66 89 91 114
-91 67 90 92 115
-92 1 68 91 93
-93 2 69 92 94
-94 3 70 93 95
-95 4 71 94 96
-96 5 72 95 97
-97 6 73 96 98
-98 99 7 74 97
-99 100 8 75 98
-100 99 101 9 76
-101 77 100 102 10
-102 11 78 101 103
-103 12 79 102 104
-104 13 80 103 105
-105 14 81 104 106
-106 15 82 105 107
-107 16 83 106 108
-108 17 84 107 109
-109 110 18 85 108
-110 111 19 86 109
-111 110 112 20 87
-112 88 111 113 21
-113 22 89 112 114
-114 23 90 113 115
-115 1 24 91 114
0