[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 116, 1 ] =
W(58,2).
(I) Following is a form readable by MAGMA:
g:=Graph<116|{ {2, 3}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106,
107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92,
93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {40, 41}, {38, 39}, {36, 37}, {34,
35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {42, 43},
{44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59},
{60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {1, 2}, {113, 114}, {109, 110}, {105,
106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {41, 42}, {37, 38},
{33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74},
{77, 78}, {81, 82}, {3, 4}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83,
84}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {67,
68}, {75, 76}, {7, 8}, {103, 104}, {87, 88}, {39, 40}, {23, 24}, {55, 56}, {71,
72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {2, 59}, {4, 61}, {6, 63}, {1,
58}, {4, 63}, {5, 62}, {1, 60}, {3, 62}, {2, 61}, {95, 96}, {31, 32}, {3, 60},
{5, 64}, {39, 98}, {37, 96}, {31, 90}, {29, 88}, {7, 66}, {13, 72}, {15, 74},
{21, 80}, {23, 82}, {45, 104}, {47, 106}, {53, 112}, {55, 114}, {6, 65}, {39,
96}, {38, 97}, {31, 88}, {30, 89}, {7, 64}, {14, 73}, {15, 72}, {22, 81}, {23,
80}, {46, 105}, {47, 104}, {54, 113}, {55, 112}, {8, 65}, {40, 97}, {30, 87},
{28, 85}, {26, 83}, {10, 67}, {12, 69}, {14, 71}, {24, 81}, {42, 99}, {44, 101},
{46, 103}, {56, 113}, {58, 115}, {8, 67}, {40, 99}, {29, 86}, {28, 87}, {9, 66},
{12, 71}, {13, 70}, {24, 83}, {25, 82}, {41, 98}, {44, 103}, {45, 102}, {56,
115}, {57, 114}, {9, 68}, {27, 86}, {25, 84}, {11, 70}, {41, 100}, {43, 102},
{57, 116}, {10, 69}, {27, 84}, {26, 85}, {11, 68}, {42, 101}, {43, 100}, {59,
116}, {16, 73}, {18, 75}, {20, 77}, {22, 79}, {48, 105}, {50, 107}, {52, 109},
{54, 111}, {16, 75}, {17, 74}, {20, 79}, {21, 78}, {48, 107}, {49, 106}, {52,
111}, {53, 110}, {17, 76}, {19, 78}, {49, 108}, {51, 110}, {18, 77}, {19, 76},
{50, 109}, {51, 108}, {1, 116}, {32, 89}, {38, 95}, {36, 93}, {34, 91}, {32,
91}, {37, 94}, {36, 95}, {33, 90}, {33, 92}, {35, 94}, {34, 93}, {35, 92}, {63,
64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58)(59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (42, 100)
c: (49, 107)
d: (18, 76)
e: (44, 102)
f: (35, 93)
g: (25, 83)
h: (27, 85)
m: (37, 95)
n1: (9, 67)
a1: (45, 103)
b1: (14, 72)
c1: (46, 104)
d1: (15, 73)
e1: (48, 106)
f1: (51, 109)
g1: (20, 78)
h1: (19, 77)
m1: (2, 58)(3, 57)(4, 56)(5, 55)(6, 54)(7, 53)(8, 52)(9, 51)(10, 50)(11, 49)(12,
48)(13, 47)(14, 46)(15, 45)(16, 44)(17, 43)(18, 42)(19, 41)(20, 40)(21, 39)(22,
38)(23, 37)(24, 36)(25, 35)(26, 34)(27, 33)(28, 32)(29, 31)(60, 116)(61,
115)(62, 114)(63, 113)(64, 112)(65, 111)(66, 110)(67, 109)(68, 108)(69, 107)(70,
106)(71, 105)(72, 104)(73, 103)(74, 102)(75, 101)(76, 100)(77, 99)(78, 98)(79,
97)(80, 96)(81, 95)(82, 94)(83, 93)(84, 92)(85, 91)(86, 90)(87, 89)
n2: (23, 81)
a2: (40, 98)
b2: (3, 61)
c2: (12, 70)
d2: (43, 101)
e2: (11, 69)
f2: (5, 63)
g2: (10, 68)
h2: (41, 99)
m2: (17, 75)
n3: (29, 87)
a3: (6, 64)
b3: (13, 71)
c3: (21, 79)
d3: (57, 115)
e3: (26, 84)
f3: (33, 91)
g3: (34, 92)
h3: (31, 89)
m3: (58, 116)
n4: (2, 60)
a4: (38, 96)
b4: (8, 66)
c4: (39, 97)
d4: (7, 65)
e4: (30, 88)
f4: (50, 108)
g4: (47, 105)
h4: (16, 74)
m4: (55, 113)
n5: (24, 82)
a5: (56, 114)
b5: (54, 112)
c5: (52, 110)
d5: (53, 111)
e5: (22, 80)
f5: (36, 94)
g5: (32, 90)
h5: (4, 62)
C4[ 116, 1 ]
116
-1 2 58 60 116
-2 1 3 59 61
-3 2 4 60 62
-4 3 5 61 63
-5 4 6 62 64
-6 5 7 63 65
-7 66 6 8 64
-8 67 7 9 65
-9 66 68 8 10
-10 11 67 69 9
-11 12 68 70 10
-12 11 13 69 71
-13 12 14 70 72
-14 13 15 71 73
-15 14 16 72 74
-16 15 17 73 75
-17 16 18 74 76
-18 77 17 19 75
-19 78 18 20 76
-20 77 79 19 21
-21 22 78 80 20
-22 23 79 81 21
-23 22 24 80 82
-24 23 25 81 83
-25 24 26 82 84
-26 25 27 83 85
-27 26 28 84 86
-28 27 29 85 87
-29 88 28 30 86
-30 89 29 31 87
-31 88 90 30 32
-32 33 89 91 31
-33 34 90 92 32
-34 33 35 91 93
-35 34 36 92 94
-36 35 37 93 95
-37 36 38 94 96
-38 37 39 95 97
-39 38 40 96 98
-40 99 39 41 97
-41 100 40 42 98
-42 99 101 41 43
-43 44 100 102 42
-44 45 101 103 43
-45 44 46 102 104
-46 45 47 103 105
-47 46 48 104 106
-48 47 49 105 107
-49 48 50 106 108
-50 49 51 107 109
-51 110 50 52 108
-52 111 51 53 109
-53 110 112 52 54
-54 55 111 113 53
-55 56 112 114 54
-56 55 57 113 115
-57 56 58 114 116
-58 1 57 59 115
-59 2 58 60 116
-60 1 3 59 61
-61 2 4 60 62
-62 3 5 61 63
-63 4 6 62 64
-64 5 7 63 65
-65 66 6 8 64
-66 67 7 9 65
-67 66 68 8 10
-68 11 67 69 9
-69 12 68 70 10
-70 11 13 69 71
-71 12 14 70 72
-72 13 15 71 73
-73 14 16 72 74
-74 15 17 73 75
-75 16 18 74 76
-76 77 17 19 75
-77 78 18 20 76
-78 77 79 19 21
-79 22 78 80 20
-80 23 79 81 21
-81 22 24 80 82
-82 23 25 81 83
-83 24 26 82 84
-84 25 27 83 85
-85 26 28 84 86
-86 27 29 85 87
-87 88 28 30 86
-88 89 29 31 87
-89 88 90 30 32
-90 33 89 91 31
-91 34 90 92 32
-92 33 35 91 93
-93 34 36 92 94
-94 35 37 93 95
-95 36 38 94 96
-96 37 39 95 97
-97 38 40 96 98
-98 99 39 41 97
-99 100 40 42 98
-100 99 101 41 43
-101 44 100 102 42
-102 45 101 103 43
-103 44 46 102 104
-104 45 47 103 105
-105 46 48 104 106
-106 47 49 105 107
-107 48 50 106 108
-108 49 51 107 109
-109 110 50 52 108
-110 111 51 53 109
-111 110 112 52 54
-112 55 111 113 53
-113 56 112 114 54
-114 55 57 113 115
-115 56 58 114 116
-116 1 57 59 115
0