[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 116, 2 ] =
{4,4}_10,4.
(I) Following is a form readable by MAGMA:
g:=Graph<116|{ {2, 3}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106,
107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92,
93}, {90, 91}, {88, 89}, {86, 87}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32,
33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {42, 43}, {44, 45},
{46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {60, 61}, {62, 63},
{64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {84, 85}, {1, 2}, {113, 114}, {109, 110}, {105, 106}, {101,
102}, {97, 98}, {93, 94}, {89, 90}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {25,
26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {45, 46}, {49, 50}, {53,
54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85,
86}, {3, 4}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {35, 36}, {27, 28},
{11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84},
{7, 8}, {103, 104}, {87, 88}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {15, 16},
{111, 112}, {47, 48}, {79, 80}, {25, 59}, {29, 63}, {28, 62}, {26, 60}, {27,
61}, {1, 59}, {4, 62}, {5, 63}, {1, 58}, {2, 60}, {3, 61}, {31, 32}, {95, 96},
{6, 64}, {39, 97}, {38, 96}, {31, 89}, {30, 88}, {7, 65}, {14, 72}, {15, 73},
{22, 80}, {23, 81}, {46, 104}, {47, 105}, {54, 112}, {55, 113}, {8, 66}, {40,
98}, {29, 87}, {28, 86}, {25, 83}, {9, 67}, {12, 70}, {13, 71}, {24, 82}, {41,
99}, {44, 102}, {45, 103}, {56, 114}, {57, 115}, {10, 68}, {27, 85}, {26, 84},
{11, 69}, {42, 100}, {43, 101}, {58, 116}, {59, 116}, {16, 74}, {17, 75}, {20,
78}, {21, 79}, {48, 106}, {49, 107}, {52, 110}, {53, 111}, {1, 93}, {2, 94}, {3,
95}, {18, 76}, {31, 65}, {30, 64}, {19, 77}, {50, 108}, {51, 109}, {32, 66},
{41, 75}, {40, 74}, {37, 71}, {36, 70}, {33, 67}, {44, 78}, {45, 79}, {48, 82},
{49, 83}, {52, 86}, {53, 87}, {56, 90}, {57, 91}, {4, 96}, {5, 97}, {6, 98}, {7,
99}, {12, 104}, {13, 105}, {14, 106}, {15, 107}, {20, 112}, {21, 113}, {22,
114}, {23, 115}, {34, 68}, {35, 69}, {42, 76}, {43, 77}, {50, 84}, {51, 85},
{58, 92}, {8, 100}, {24, 116}, {9, 101}, {10, 102}, {11, 103}, {38, 72}, {39,
73}, {54, 88}, {55, 89}, {32, 90}, {37, 95}, {36, 94}, {33, 91}, {16, 108}, {17,
109}, {18, 110}, {19, 111}, {34, 92}, {35, 93}, {46, 80}, {47, 81}, {63, 64}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 59, 58, 93)(3, 25, 57, 35)(4, 83, 56, 69)(5, 49, 55, 11)(6, 107, 54,
103)(7, 15, 53, 45)(8, 73, 52, 79)(9, 39, 51, 21)(10, 97, 50, 113)(12, 63, 48,
89)(13, 29, 47, 31)(14, 87, 46, 65)(16, 111, 44, 99)(17, 19, 43, 41)(18, 77, 42,
75)(20, 101, 40, 109)(22, 67, 38, 85)(23, 33, 37, 27)(24, 91, 36, 61)(26, 115,
34, 95)(28, 81, 32, 71)(30, 105)(60, 116, 92, 94)(62, 82, 90, 70)(64, 106, 88,
104)(66, 72, 86, 80)(68, 96, 84, 114)(74, 110, 78, 100)(98, 108, 112, 102) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58)(59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116)
C4[ 116, 2 ]
116
-1 2 58 59 93
-2 1 3 60 94
-3 2 4 61 95
-4 3 5 62 96
-5 4 6 63 97
-6 5 7 64 98
-7 99 6 8 65
-8 66 100 7 9
-9 67 101 8 10
-10 11 68 102 9
-11 12 69 103 10
-12 11 13 70 104
-13 12 14 71 105
-14 13 15 72 106
-15 14 16 73 107
-16 15 17 74 108
-17 16 18 75 109
-18 110 17 19 76
-19 77 111 18 20
-20 78 112 19 21
-21 22 79 113 20
-22 23 80 114 21
-23 22 24 81 115
-24 23 25 82 116
-25 24 26 59 83
-26 25 27 60 84
-27 26 28 61 85
-28 27 29 62 86
-29 28 30 63 87
-30 88 29 31 64
-31 89 30 32 65
-32 33 66 90 31
-33 34 67 91 32
-34 33 35 68 92
-35 34 36 69 93
-36 35 37 70 94
-37 36 38 71 95
-38 37 39 72 96
-39 38 40 73 97
-40 39 41 74 98
-41 99 40 42 75
-42 100 41 43 76
-43 44 77 101 42
-44 45 78 102 43
-45 44 46 79 103
-46 45 47 80 104
-47 46 48 81 105
-48 47 49 82 106
-49 48 50 83 107
-50 49 51 84 108
-51 50 52 85 109
-52 110 51 53 86
-53 111 52 54 87
-54 55 88 112 53
-55 56 89 113 54
-56 55 57 90 114
-57 56 58 91 115
-58 1 57 92 116
-59 1 25 60 116
-60 2 26 59 61
-61 3 27 60 62
-62 4 28 61 63
-63 5 29 62 64
-64 6 30 63 65
-65 66 7 31 64
-66 67 8 32 65
-67 33 66 68 9
-68 34 67 69 10
-69 11 35 68 70
-70 12 36 69 71
-71 13 37 70 72
-72 14 38 71 73
-73 15 39 72 74
-74 16 40 73 75
-75 17 41 74 76
-76 77 18 42 75
-77 78 19 43 76
-78 44 77 79 20
-79 45 78 80 21
-80 22 46 79 81
-81 23 47 80 82
-82 24 48 81 83
-83 25 49 82 84
-84 26 50 83 85
-85 27 51 84 86
-86 28 52 85 87
-87 88 29 53 86
-88 89 30 54 87
-89 55 88 90 31
-90 56 89 91 32
-91 33 57 90 92
-92 34 58 91 93
-93 1 35 92 94
-94 2 36 93 95
-95 3 37 94 96
-96 4 38 95 97
-97 5 39 96 98
-98 99 6 40 97
-99 100 7 41 98
-100 99 101 8 42
-101 100 102 9 43
-102 44 101 103 10
-103 11 45 102 104
-104 12 46 103 105
-105 13 47 104 106
-106 14 48 105 107
-107 15 49 106 108
-108 16 50 107 109
-109 110 17 51 108
-110 111 18 52 109
-111 110 112 19 53
-112 111 113 20 54
-113 55 112 114 21
-114 22 56 113 115
-115 23 57 114 116
-116 24 58 59 115
0