C4graphGraph forms for C4 [ 117, 3 ] = {4,4}_9,6

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 117, 3 ] = {4,4}_9,6.

(I) Following is a form readable by MAGMA:

g:=Graph<117|{ {2, 3}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {1, 2}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {103, 104}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {1, 39}, {8, 47}, {16, 55}, {24, 63}, {64, 103}, {72, 111}, {1, 40}, {3, 42}, {5, 44}, {7, 46}, {17, 56}, {19, 58}, {21, 60}, {23, 62}, {65, 104}, {67, 106}, {69, 108}, {71, 110}, {2, 41}, {6, 45}, {18, 57}, {22, 61}, {66, 105}, {70, 109}, {4, 43}, {20, 59}, {68, 107}, {9, 48}, {11, 50}, {13, 52}, {15, 54}, {73, 112}, {75, 114}, {77, 116}, {79, 117}, {10, 49}, {14, 53}, {74, 113}, {78, 117}, {12, 51}, {95, 96}, {31, 32}, {76, 115}, {17, 80}, {39, 102}, {37, 100}, {35, 98}, {33, 96}, {31, 94}, {29, 92}, {27, 90}, {19, 82}, {21, 84}, {23, 86}, {25, 88}, {18, 81}, {38, 101}, {34, 97}, {30, 93}, {22, 85}, {26, 89}, {20, 83}, {36, 99}, {28, 91}, {24, 87}, {25, 64}, {31, 70}, {29, 68}, {27, 66}, {57, 96}, {59, 98}, {61, 100}, {63, 102}, {26, 65}, {30, 69}, {58, 97}, {62, 101}, {16, 79}, {28, 67}, {60, 99}, {1, 103}, {40, 78}, {8, 110}, {9, 111}, {32, 71}, {40, 79}, {48, 87}, {56, 95}, {33, 72}, {39, 78}, {37, 76}, {35, 74}, {49, 88}, {51, 90}, {53, 92}, {55, 94}, {2, 104}, {3, 105}, {6, 108}, {7, 109}, {34, 73}, {38, 77}, {50, 89}, {54, 93}, {4, 106}, {5, 107}, {36, 75}, {52, 91}, {41, 80}, {45, 84}, {43, 82}, {47, 86}, {10, 112}, {11, 113}, {14, 116}, {15, 117}, {42, 81}, {46, 85}, {12, 114}, {13, 115}, {32, 95}, {44, 83}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39)(40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78)(79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117)
b: (2, 103, 39, 40)(3, 64, 38, 79)(4, 25, 37, 16)(5, 88, 36, 55)(6, 49, 35, 94)(7, 10, 34, 31)(8, 112, 33, 70)(9, 73, 32, 109)(11, 97, 30, 46)(12, 58, 29, 85)(13, 19, 28, 22)(14, 82, 27, 61)(15, 43, 26, 100)(17, 106, 24, 76)(18, 67, 23, 115)(20, 91, 21, 52)(41, 104, 102, 78)(42, 65, 101, 117)(44, 89, 99, 54)(45, 50, 98, 93)(47, 113, 96, 69)(48, 74, 95, 108)(51, 59, 92, 84)(53, 83, 90, 60)(56, 107, 87, 75)(57, 68, 86, 114)(62, 116, 81, 66)(63, 77, 80, 105)(71, 110, 111, 72)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 117, 3 ]
117
-1 2 103 39 40
-2 1 3 104 41
-3 2 4 105 42
-4 3 5 106 43
-5 44 4 6 107
-6 45 5 7 108
-7 46 6 8 109
-8 110 47 7 9
-9 111 48 8 10
-10 11 112 49 9
-11 12 113 50 10
-12 11 13 114 51
-13 12 14 115 52
-14 13 15 116 53
-15 14 16 117 54
-16 55 79 15 17
-17 56 80 16 18
-18 57 81 17 19
-19 58 82 18 20
-20 59 83 19 21
-21 22 60 84 20
-22 23 61 85 21
-23 22 24 62 86
-24 23 25 63 87
-25 88 24 26 64
-26 89 25 27 65
-27 66 90 26 28
-28 67 91 27 29
-29 68 92 28 30
-30 69 93 29 31
-31 70 94 30 32
-32 33 71 95 31
-33 34 72 96 32
-34 33 35 73 97
-35 34 36 74 98
-36 99 35 37 75
-37 100 36 38 76
-38 77 101 37 39
-39 1 78 102 38
-40 1 78 79 41
-41 2 80 40 42
-42 3 81 41 43
-43 44 4 82 42
-44 45 5 83 43
-45 44 46 6 84
-46 45 47 7 85
-47 46 48 8 86
-48 47 49 9 87
-49 88 48 50 10
-50 11 89 49 51
-51 12 90 50 52
-52 13 91 51 53
-53 14 92 52 54
-54 55 15 93 53
-55 56 16 94 54
-56 55 57 17 95
-57 56 58 18 96
-58 57 59 19 97
-59 58 60 20 98
-60 99 59 61 21
-61 22 100 60 62
-62 23 101 61 63
-63 24 102 62 64
-64 25 103 63 65
-65 66 26 104 64
-66 67 27 105 65
-67 66 68 28 106
-68 67 69 29 107
-69 68 70 30 108
-70 69 71 31 109
-71 110 70 72 32
-72 33 111 71 73
-73 34 112 72 74
-74 35 113 73 75
-75 36 114 74 76
-76 77 37 115 75
-77 78 38 116 76
-78 77 39 40 117
-79 80 16 40 117
-80 79 81 17 41
-81 80 82 18 42
-82 81 83 19 43
-83 44 82 84 20
-84 45 83 85 21
-85 22 46 84 86
-86 23 47 85 87
-87 88 24 48 86
-88 89 25 49 87
-89 88 90 26 50
-90 89 91 27 51
-91 90 92 28 52
-92 91 93 29 53
-93 92 94 30 54
-94 55 93 95 31
-95 56 94 96 32
-96 33 57 95 97
-97 34 58 96 98
-98 99 35 59 97
-99 100 36 60 98
-100 99 101 37 61
-101 100 102 38 62
-102 101 103 39 63
-103 1 102 104 64
-104 2 103 105 65
-105 66 3 104 106
-106 67 4 105 107
-107 68 5 106 108
-108 69 6 107 109
-109 110 70 7 108
-110 111 71 8 109
-111 110 112 72 9
-112 111 113 73 10
-113 11 112 114 74
-114 12 113 115 75
-115 13 114 116 76
-116 77 14 115 117
-117 78 79 15 116
0

**************