C4graphGraph forms for C4 [ 120, 29 ] = PL(Curtain_15(1,5,1,2,12),[4^15,6^10])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 29 ] = PL(Curtain_15(1,5,1,2,12),[4^15,6^10]).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {58, 61}, {53, 61}, {45, 63}, {38, 63}, {34, 61}, {26, 63}, {20, 61}, {16, 63}, {6, 62}, {2, 62}, {3, 62}, {1, 62}, {5, 69}, {52, 116}, {45, 109}, {22, 86}, {10, 75}, {45, 108}, {25, 88}, {23, 86}, {13, 79}, {55, 117}, {19, 81}, {41, 107}, {19, 80}, {53, 118}, {49, 114}, {48, 115}, {15, 75}, {52, 112}, {49, 117}, {28, 88}, {25, 93}, {12, 73}, {44, 105}, {23, 82}, {22, 83}, {3, 69}, {25, 95}, {42, 108}, {21, 82}, {43, 108}, {35, 100}, {37, 98}, {39, 96}, {18, 90}, {19, 91}, {2, 75}, {16, 89}, {31, 85}, {38, 109}, {29, 81}, {47, 99}, {8, 69}, {57, 116}, {53, 120}, {24, 85}, {31, 82}, {33, 108}, {25, 87}, {6, 73}, {24, 87}, {36, 107}, {4, 84}, {56, 104}, {54, 102}, {53, 101}, {30, 78}, {36, 117}, {41, 120}, {5, 87}, {48, 98}, {30, 76}, {27, 73}, {13, 95}, {12, 94}, {9, 90}, {51, 96}, {27, 72}, {11, 88}, {32, 115}, {17, 69}, {18, 70}, {32, 116}, {10, 95}, {50, 103}, {34, 119}, {38, 115}, {11, 93}, {39, 113}, {7, 80}, {56, 111}, {29, 74}, {1, 89}, {59, 99}, {55, 111}, {20, 76}, {12, 84}, {3, 91}, {15, 86}, {50, 107}, {26, 67}, {17, 72}, {40, 113}, {28, 70}, {47, 117}, {40, 114}, {1, 90}, {51, 104}, {14, 85}, {8, 83}, {2, 89}, {21, 73}, {59, 103}, {10, 87}, {14, 83}, {13, 80}, {4, 90}, {7, 89}, {5, 91}, {42, 116}, {9, 86}, {60, 99}, {58, 101}, {54, 105}, {11, 84}, {41, 118}, {33, 65}, {12, 109}, {4, 102}, {60, 94}, {51, 81}, {5, 103}, {32, 66}, {34, 64}, {42, 72}, {20, 119}, {44, 79}, {43, 72}, {15, 107}, {58, 94}, {57, 93}, {23, 115}, {40, 76}, {35, 70}, {40, 77}, {7, 97}, {44, 74}, {16, 118}, {36, 66}, {14, 105}, {21, 114}, {41, 78}, {8, 96}, {42, 66}, {8, 97}, {46, 68}, {6, 109}, {38, 77}, {39, 76}, {9, 101}, {45, 65}, {13, 97}, {11, 102}, {47, 66}, {31, 114}, {43, 70}, {14, 96}, {46, 64}, {30, 112}, {36, 75}, {17, 97}, {55, 71}, {35, 83}, {37, 85}, {7, 118}, {33, 80}, {37, 84}, {2, 112}, {46, 92}, {22, 100}, {32, 82}, {4, 119}, {52, 71}, {51, 64}, {46, 93}, {44, 95}, {26, 110}, {59, 79}, {30, 106}, {28, 104}, {27, 111}, {27, 110}, {54, 67}, {1, 119}, {55, 65}, {49, 71}, {31, 105}, {39, 81}, {18, 101}, {47, 88}, {43, 92}, {19, 100}, {9, 113}, {60, 68}, {56, 64}, {29, 100}, {58, 67}, {56, 65}, {10, 112}, {52, 78}, {48, 74}, {24, 98}, {18, 104}, {33, 91}, {3, 120}, {21, 110}, {37, 94}, {22, 106}, {54, 74}, {50, 78}, {49, 77}, {26, 102}, {23, 106}, {57, 68}, {50, 79}, {48, 77}, {6, 120}, {57, 71}, {20, 106}, {17, 111}, {16, 110}, {15, 113}, {34, 92}, {24, 103}, {60, 67}, {59, 68}, {29, 98}, {28, 99}, {35, 92} }>;

(II) A more general form is to represent the graph as the orbit of {58, 61} under the group generated by the following permutations:

a: (1, 3, 8, 22, 30, 10, 24, 31, 32, 57, 11, 12, 27, 43, 34)(2, 5, 14, 23, 52, 25, 37, 21, 42, 46, 4, 6, 17, 35, 20)(7, 19, 39, 15, 50, 44, 48, 49, 47, 60, 26, 45, 56, 18, 53)(9, 41, 13, 29, 40, 36, 59, 54, 38, 55, 28, 58, 16, 33, 51)(61, 89, 91, 96, 86, 78, 95, 98, 114, 66, 68, 102, 109, 111, 70)(62, 69, 83, 106, 112, 87, 85, 82, 116, 93, 84, 73, 72, 92, 119)(63, 65, 104, 101, 118, 80, 81, 113, 107, 79, 74, 77, 117, 99, 67)(64, 90, 120, 97, 100, 76, 75, 103, 105, 115, 71, 88, 94, 110, 108)
b: (2, 4)(3, 34)(5, 46)(6, 20)(7, 18)(8, 56)(9, 16)(10, 11)(12, 30)(13, 28)(14, 55)(15, 26)(17, 51)(19, 43)(21, 40)(22, 45)(23, 38)(24, 57)(27, 39)(29, 42)(31, 49)(32, 48)(33, 35)(36, 54)(37, 52)(41, 58)(44, 47)(50, 60)(61, 120)(62, 119)(63, 86)(64, 69)(65, 83)(66, 74)(67, 107)(68, 103)(70, 80)(71, 85)(72, 81)(73, 76)(75, 102)(77, 82)(78, 94)(79, 99)(84, 112)(87, 93)(88, 95)(89, 90)(91, 92)(96, 111)(97, 104)(98, 116)(100, 108)(101, 118)(105, 117)(106, 109)(110, 113)
c: (3, 7)(5, 13)(6, 16)(8, 19)(12, 26)(14, 29)(17, 33)(21, 38)(24, 44)(27, 45)(31, 48)(37, 54)(62, 89)(63, 73)(65, 111)(67, 94)(69, 80)(72, 108)(74, 85)(77, 114)(79, 103)(81, 96)(82, 115)(83, 100)(84, 102)(87, 95)(91, 97)(98, 105)(109, 110)(118, 120)
d: (9, 20)(15, 30)(18, 34)(22, 39)(23, 40)(28, 46)(32, 49)(35, 51)(36, 52)(42, 55)(43, 56)(47, 57)(61, 101)(64, 70)(65, 108)(66, 71)(68, 99)(72, 111)(75, 112)(76, 86)(77, 115)(78, 107)(81, 100)(82, 114)(83, 96)(88, 93)(90, 119)(92, 104)(106, 113)(116, 117)
e: (3, 7)(5, 13)(6, 16)(12, 26)(24, 44)(37, 54)(62, 89)(63, 109)(67, 94)(69, 97)(73, 110)(74, 98)(79, 103)(80, 91)(84, 102)(85, 105)(87, 95)(118, 120)
f: (1, 2)(3, 6)(4, 10)(5, 12)(7, 16)(8, 21)(9, 30)(11, 25)(13, 26)(14, 31)(15, 20)(17, 27)(18, 52)(19, 38)(22, 40)(23, 39)(24, 37)(28, 57)(29, 48)(32, 51)(33, 45)(34, 36)(35, 49)(41, 53)(42, 56)(43, 55)(44, 54)(46, 47)(50, 58)(59, 60)(61, 107)(63, 80)(64, 66)(65, 108)(67, 79)(68, 99)(69, 73)(70, 71)(72, 111)(75, 119)(76, 86)(77, 100)(78, 101)(81, 115)(82, 96)(83, 114)(84, 87)(88, 93)(90, 112)(91, 109)(92, 117)(94, 103)(95, 102)(97, 110)(104, 116)(106, 113)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 29 ]
120
-1 89 90 62 119
-2 89 112 62 75
-3 69 91 62 120
-4 90 102 84 119
-5 69 91 103 87
-6 62 73 109 120
-7 89 80 118 97
-8 69 83 96 97
-9 90 101 113 86
-10 112 95 75 87
-11 88 102 93 84
-12 94 73 84 109
-13 79 80 95 97
-14 83 105 85 96
-15 113 107 75 86
-16 110 89 63 118
-17 111 69 72 97
-18 90 101 70 104
-19 100 80 91 81
-20 61 106 119 76
-21 110 114 82 73
-22 100 83 106 86
-23 82 115 106 86
-24 103 85 87 98
-25 88 93 95 87
-26 110 67 102 63
-27 110 111 72 73
-28 88 99 70 104
-29 100 81 74 98
-30 78 112 106 76
-31 114 82 105 85
-32 66 82 115 116
-33 80 91 108 65
-34 92 61 64 119
-35 100 70 92 83
-36 66 117 107 75
-37 94 84 85 98
-38 77 115 63 109
-39 113 81 96 76
-40 77 113 114 76
-41 78 107 118 120
-42 66 72 116 108
-43 70 92 72 108
-44 79 105 95 74
-45 63 108 65 109
-46 68 92 93 64
-47 66 88 99 117
-48 77 115 74 98
-49 77 114 71 117
-50 78 79 103 107
-51 81 104 96 64
-52 78 112 71 116
-53 101 61 118 120
-54 67 102 105 74
-55 111 71 117 65
-56 111 104 64 65
-57 68 71 93 116
-58 67 101 61 94
-59 99 68 79 103
-60 99 67 68 94
-61 34 58 20 53
-62 1 2 3 6
-63 45 26 16 38
-64 34 56 46 51
-65 33 55 45 56
-66 36 47 42 32
-67 58 26 60 54
-68 46 57 59 60
-69 3 5 17 8
-70 35 28 18 43
-71 55 57 49 52
-72 27 17 42 43
-73 12 27 6 21
-74 44 48 29 54
-75 2 36 15 10
-76 39 40 30 20
-77 48 38 49 40
-78 50 30 41 52
-79 44 13 59 50
-80 33 13 7 19
-81 39 29 51 19
-82 23 31 21 32
-83 22 35 14 8
-84 11 12 4 37
-85 24 14 37 31
-86 22 23 15 9
-87 24 25 5 10
-88 11 25 47 28
-89 1 2 16 7
-90 1 4 18 9
-91 33 3 5 19
-92 34 35 46 43
-93 11 46 57 25
-94 12 58 37 60
-95 44 13 25 10
-96 14 39 51 8
-97 13 17 7 8
-98 24 37 48 29
-99 47 59 60 28
-100 22 35 29 19
-101 58 18 9 53
-102 11 4 26 54
-103 24 59 5 50
-104 56 28 18 51
-105 44 14 31 54
-106 22 23 30 20
-107 36 15 50 41
-108 33 45 42 43
-109 12 45 38 6
-110 26 16 27 21
-111 55 56 27 17
-112 2 30 52 10
-113 15 39 40 9
-114 49 40 31 21
-115 23 48 38 32
-116 57 52 42 32
-117 55 36 47 49
-118 16 7 41 53
-119 1 34 4 20
-120 3 6 41 53
0

**************