C4graphGraph forms for C4 [ 120, 32 ] = PL(BC_30({0,15},{1,4})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 32 ] = PL(BC_30({0,15},{1,4}).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {64, 67}, {92, 95}, {64, 68}, {91, 95}, {83, 87}, {82, 86}, {82, 87}, {83, 86}, {18, 30}, {19, 31}, {18, 31}, {19, 30}, {41, 57}, {104, 120}, {72, 88}, {42, 58}, {73, 88}, {105, 120}, {35, 49}, {34, 49}, {41, 58}, {42, 57}, {42, 62}, {79, 91}, {78, 90}, {43, 63}, {34, 55}, {79, 90}, {78, 91}, {42, 63}, {43, 62}, {33, 55}, {34, 52}, {35, 52}, {68, 92}, {33, 56}, {69, 92}, {44, 53}, {34, 56}, {44, 54}, {32, 59}, {1, 29}, {105, 117}, {73, 85}, {69, 89}, {33, 61}, {32, 60}, {2, 30}, {32, 61}, {104, 117}, {72, 85}, {68, 89}, {43, 54}, {43, 53}, {44, 50}, {45, 51}, {1, 30}, {2, 29}, {44, 51}, {45, 50}, {5, 37}, {5, 36}, {83, 114}, {83, 113}, {4, 39}, {31, 60}, {3, 39}, {31, 59}, {84, 113}, {84, 114}, {6, 46}, {95, 119}, {94, 118}, {7, 47}, {6, 47}, {95, 118}, {94, 119}, {7, 46}, {3, 40}, {4, 40}, {8, 36}, {8, 37}, {89, 105}, {90, 106}, {23, 36}, {90, 105}, {89, 106}, {87, 100}, {23, 35}, {87, 99}, {17, 41}, {86, 110}, {85, 109}, {22, 46}, {21, 45}, {17, 40}, {74, 115}, {73, 115}, {21, 46}, {91, 96}, {88, 99}, {86, 109}, {85, 110}, {24, 35}, {22, 45}, {20, 40}, {92, 96}, {88, 100}, {24, 36}, {20, 41}, {73, 116}, {74, 116}, {7, 71}, {12, 76}, {8, 72}, {12, 77}, {48, 114}, {48, 115}, {9, 77}, {9, 76}, {48, 117}, {48, 118}, {10, 66}, {11, 67}, {10, 67}, {11, 66}, {13, 71}, {23, 93}, {13, 70}, {22, 93}, {26, 84}, {7, 72}, {27, 84}, {8, 71}, {17, 65}, {18, 66}, {53, 101}, {38, 119}, {53, 100}, {25, 75}, {37, 119}, {38, 116}, {17, 66}, {25, 74}, {18, 65}, {39, 116}, {5, 81}, {10, 94}, {9, 93}, {6, 82}, {16, 70}, {28, 74}, {39, 113}, {58, 108}, {59, 109}, {5, 82}, {28, 75}, {16, 71}, {10, 93}, {9, 94}, {6, 81}, {38, 113}, {58, 109}, {59, 108}, {19, 75}, {20, 76}, {54, 110}, {55, 111}, {47, 118}, {54, 111}, {55, 110}, {27, 65}, {47, 117}, {57, 99}, {26, 65}, {57, 98}, {56, 100}, {37, 120}, {56, 101}, {14, 80}, {15, 81}, {38, 120}, {60, 98}, {14, 81}, {60, 99}, {20, 75}, {19, 76}, {15, 80}, {32, 64}, {13, 108}, {33, 64}, {49, 80}, {2, 96}, {14, 108}, {3, 97}, {50, 80}, {2, 97}, {11, 104}, {3, 96}, {12, 104}, {14, 107}, {13, 107}, {22, 112}, {23, 112}, {25, 112}, {1, 107}, {26, 112}, {1, 106}, {12, 103}, {11, 103}, {15, 98}, {4, 106}, {29, 115}, {15, 97}, {4, 107}, {29, 114}, {61, 77}, {62, 78}, {16, 97}, {52, 69}, {16, 98}, {21, 103}, {52, 70}, {21, 102}, {62, 77}, {61, 78}, {26, 111}, {51, 70}, {25, 111}, {51, 69}, {28, 101}, {28, 102}, {63, 68}, {63, 67}, {27, 102}, {50, 79}, {24, 102}, {27, 101}, {49, 79}, {24, 103} }>;

(II) A more general form is to represent the graph as the orbit of {64, 67} under the group generated by the following permutations:

a: (2, 4)(5, 10, 8, 9)(6, 11, 7, 12)(13, 19, 14, 18)(15, 17, 16, 20)(22, 24)(25, 49, 26, 52)(27, 51, 28, 50)(29, 106)(30, 107)(31, 108)(32, 109)(33, 110)(34, 111)(35, 112)(36, 93)(37, 94)(38, 95)(39, 96)(40, 97)(41, 98)(42, 99)(43, 100)(44, 101)(45, 102)(46, 103)(47, 104)(48, 105)(54, 56)(58, 60)(61, 86, 64, 85)(62, 87, 63, 88)(65, 70, 75, 80)(66, 71, 76, 81)(67, 72, 77, 82)(68, 73, 78, 83)(69, 74, 79, 84)(89, 115, 90, 114)(91, 113, 92, 116)(118, 120)
b: (5, 8)(6, 7)(9, 10)(11, 12)(13, 14)(15, 16)(17, 20)(18, 19)(25, 26)(27, 28)(49, 52)(50, 51)(61, 64)(62, 63)(65, 75)(66, 76)(67, 77)(68, 78)(69, 79)(70, 80)(71, 81)(72, 82)(73, 83)(74, 84)(85, 86)(87, 88)(89, 90)(91, 92)(113, 116)(114, 115)
c: (1, 5, 28, 58, 52, 9)(2, 6, 27, 57, 51, 10)(3, 7, 26, 60, 50, 11)(4, 8, 25, 59, 49, 12)(13, 23, 19, 14, 24, 20)(15, 21, 17, 16, 22, 18)(29, 82, 101, 42, 69, 94)(30, 81, 102, 41, 70, 93)(31, 80, 103, 40, 71, 112)(32, 79, 104, 39, 72, 111)(33, 78, 105, 38, 73, 110)(34, 77, 106, 37, 74, 109)(35, 76, 107, 36, 75, 108)(43, 68, 95, 48, 83, 100)(44, 67, 96, 47, 84, 99)(45, 66, 97, 46, 65, 98)(53, 63, 92, 118, 114, 87)(54, 64, 91, 117, 113, 88)(55, 61, 90, 120, 116, 85)(56, 62, 89, 119, 115, 86)
d: (2, 4)(5, 88)(6, 85)(7, 86)(8, 87)(9, 62)(10, 63)(11, 64)(12, 61)(13, 114)(14, 115)(15, 116)(16, 113)(17, 92)(18, 89)(19, 90)(20, 91)(21, 55)(22, 54)(23, 53)(24, 56)(25, 50)(26, 51)(27, 52)(28, 49)(29, 107)(30, 106)(31, 105)(32, 104)(33, 103)(34, 102)(35, 101)(36, 100)(37, 99)(38, 98)(39, 97)(40, 96)(41, 95)(42, 94)(43, 93)(44, 112)(45, 111)(46, 110)(47, 109)(48, 108)(57, 119)(58, 118)(59, 117)(60, 120)(65, 69)(66, 68)(70, 84)(71, 83)(72, 82)(73, 81)(74, 80)(75, 79)(76, 78)
e: (1, 2)(3, 4)(9, 12)(10, 11)(13, 16)(14, 15)(21, 22)(23, 24)(25, 28)(26, 27)(53, 54)(55, 56)(57, 58)(59, 60)(85, 88)(86, 87)(89, 92)(90, 91)(93, 103)(94, 104)(95, 105)(96, 106)(97, 107)(98, 108)(99, 109)(100, 110)(101, 111)(102, 112)(117, 118)(119, 120)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 32 ]
120
-1 29 106 30 107
-2 29 30 96 97
-3 39 40 96 97
-4 39 40 106 107
-5 36 37 81 82
-6 46 47 81 82
-7 46 47 71 72
-8 36 37 71 72
-9 77 93 94 76
-10 66 67 93 94
-11 66 67 103 104
-12 77 103 104 76
-13 70 71 107 108
-14 80 81 107 108
-15 80 81 97 98
-16 70 71 97 98
-17 66 40 41 65
-18 66 30 31 65
-19 30 31 75 76
-20 40 41 75 76
-21 45 46 102 103
-22 45 46 112 93
-23 35 112 36 93
-24 35 36 102 103
-25 111 112 74 75
-26 111 112 84 65
-27 101 102 84 65
-28 101 102 74 75
-29 1 2 114 115
-30 1 2 18 19
-31 59 60 18 19
-32 59 60 61 64
-33 55 56 61 64
-34 55 56 49 52
-35 23 24 49 52
-36 23 24 5 8
-37 5 8 119 120
-38 113 116 119 120
-39 3 113 4 116
-40 3 4 17 20
-41 57 58 17 20
-42 57 58 62 63
-43 62 63 53 54
-44 50 51 53 54
-45 22 50 51 21
-46 22 6 7 21
-47 6 7 117 118
-48 114 115 117 118
-49 34 35 79 80
-50 44 45 79 80
-51 44 45 69 70
-52 34 35 69 70
-53 44 100 101 43
-54 44 110 111 43
-55 33 110 34 111
-56 33 34 100 101
-57 99 41 42 98
-58 41 42 108 109
-59 31 108 32 109
-60 99 31 32 98
-61 33 77 78 32
-62 77 78 42 43
-63 67 68 42 43
-64 33 67 68 32
-65 26 27 17 18
-66 11 17 18 10
-67 11 63 64 10
-68 89 92 63 64
-69 89 92 51 52
-70 13 16 51 52
-71 13 16 7 8
-72 88 7 8 85
-73 88 115 116 85
-74 25 115 28 116
-75 25 28 19 20
-76 12 19 9 20
-77 12 61 62 9
-78 90 91 61 62
-79 90 91 49 50
-80 14 15 49 50
-81 14 15 5 6
-82 5 6 86 87
-83 113 114 86 87
-84 113 26 114 27
-85 110 72 73 109
-86 110 82 83 109
-87 99 100 82 83
-88 99 100 72 73
-89 68 69 105 106
-90 78 79 105 106
-91 78 79 95 96
-92 68 69 95 96
-93 22 23 9 10
-94 118 9 119 10
-95 91 92 118 119
-96 2 3 91 92
-97 2 3 15 16
-98 57 15 16 60
-99 88 57 60 87
-100 88 56 53 87
-101 56 27 28 53
-102 24 27 28 21
-103 11 12 24 21
-104 11 12 117 120
-105 89 90 117 120
-106 1 89 90 4
-107 1 13 14 4
-108 13 14 58 59
-109 58 59 85 86
-110 55 85 86 54
-111 55 25 26 54
-112 22 23 25 26
-113 38 39 83 84
-114 48 83 29 84
-115 48 29 73 74
-116 38 39 73 74
-117 47 48 104 105
-118 47 48 94 95
-119 37 38 94 95
-120 37 38 104 105
0

**************