[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 120, 34 ]. See Glossary for some
detail.
UG(ATD[120, 10]) = UG(ATD[120, 11]) = UG(Rmap(240, 4) { 6, 4| 6}_ 20)
= MG(Rmap(120, 13) { 6, 6| 10}_ 6) = DG(Rmap(120, 13) { 6, 6| 10}_ 6) =
MG(Rmap(120,156) { 6, 20| 10}_ 20)
= DG(Rmap(120,158) { 20, 6| 10}_ 20) = DG(Rmap( 60, 13) { 6, 6| 5}_ 6) =
DG(Rmap( 60, 65) { 6, 6| 10}_ 6)
= UG(Cmap(240, 5) { 12, 4| 20}_ 30) = UG(Cmap(240, 7) { 12, 4| 20}_ 30) =
MG(Cmap(120, 9) { 12, 12| 15}_ 20)
= MG(Cmap(120, 10) { 12, 12| 15}_ 20) = BGCG(UG(ATD[60,19]); K1;2) = AT[120,
4]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 11 | 0 | - | - | - | 0 | - | - | - | - |
2 | 0 | 5 7 | - | - | - | - | 0 | - | - | - |
3 | - | - | - | - | - | 6 | - | 0 | 0 | 0 |
4 | - | - | - | - | 0 | 7 | - | 3 | 9 | - |
5 | - | - | - | 0 | - | 8 | - | 0 | - | 6 |
6 | 0 | - | 6 | 5 | 4 | - | - | - | - | - |
7 | - | 0 | - | - | - | - | - | 6 | 8 | 4 |
8 | - | - | 0 | 9 | 0 | - | 6 | - | - | - |
9 | - | - | 0 | 3 | - | - | 4 | - | - | 3 |
10 | - | - | 0 | - | 6 | - | 8 | - | 9 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 4 | - | - | - | 0 1 | - | - | - | - |
2 | 0 8 | - | - | - | - | - | 0 7 | - | - | - |
3 | - | - | - | 0 8 | - | - | - | 0 7 | - | - |
4 | - | - | 0 4 | - | - | - | - | - | 4 5 | - |
5 | - | - | - | - | - | - | 1 | - | 10 | 0 8 |
6 | 0 11 | - | - | - | - | - | - | - | 2 | 2 |
7 | - | 0 5 | - | - | 11 | - | - | 10 | - | - |
8 | - | - | 0 5 | - | - | - | 2 | - | - | 11 |
9 | - | - | - | 7 8 | 2 | 10 | - | - | - | - |
10 | - | - | - | - | 0 4 | 10 | - | 1 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | 0 | - | - | 0 | - |
2 | 0 | - | - | - | 0 4 | - | - | - | 1 | - |
3 | - | - | - | - | 6 | - | 0 | 0 | - | 0 |
4 | 0 | - | - | - | - | - | 2 10 | - | 11 | - |
5 | - | 0 8 | 6 | - | - | - | - | 11 | - | - |
6 | 0 | - | - | - | - | - | - | 4 | - | 2 6 |
7 | - | - | 0 | 2 10 | - | - | - | 7 | - | - |
8 | - | - | 0 | - | 1 | 8 | 5 | - | - | - |
9 | 0 | 11 | - | 1 | - | - | - | - | - | 4 |
10 | - | - | 0 | - | - | 6 10 | - | - | 8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | 0 | - | - | - | 0 |
2 | 0 14 | - | - | - | - | 0 | 0 | - |
3 | - | - | - | 13 | 0 4 | - | - | 8 |
4 | 0 | - | 2 | - | - | - | 6 14 | - |
5 | - | - | 0 11 | - | - | 10 | 5 | - |
6 | - | 0 | - | - | 5 | - | - | 2 4 |
7 | - | 0 | - | 1 9 | 10 | - | - | - |
8 | 0 | - | 7 | - | - | 11 13 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 | 0 |
2 | 0 | 1 19 | 0 | - | - | - |
3 | - | 0 | - | 18 | 14 | 12 |
4 | 0 | - | 2 | 7 13 | - | - |
5 | 0 | - | 6 | - | 3 17 | - |
6 | 0 | - | 8 | - | - | 9 11 |