[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 120, 45 ]. See Glossary for some
detail.
UG(ATD[120, 65]) = UG(ATD[120, 66]) = MG(Rmap(120, 47) { 10, 12| 20}_ 20)
= DG(Rmap(120, 47) { 10, 12| 20}_ 20) = DG(Rmap(120, 57) { 10, 20| 12}_ 12) =
AT[120, 20]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | 1 11 | - | - | - | - | - | 9 | 4 | - |
3 | - | - | - | 0 | 3 | - | 0 | - | - | 0 |
4 | - | - | 0 | - | - | 9 | 3 | - | - | 2 |
5 | 0 | - | 9 | - | - | - | - | 3 | - | 6 |
6 | 0 | - | - | 3 | - | - | - | - | 9 | 8 |
7 | - | - | 0 | 9 | - | - | 5 7 | - | - | - |
8 | 0 | 3 | - | - | 9 | - | - | - | 10 | - |
9 | 0 | 8 | - | - | - | 3 | - | 2 | - | - |
10 | - | - | 0 | 10 | 6 | 4 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 | - | 0 | - | - | - |
2 | 0 | - | 1 | - | 5 | - | - | - | - | 1 |
3 | - | 11 | - | 6 | - | 8 10 | - | - | - | - |
4 | 0 | - | 6 | - | - | - | 7 | - | 10 | - |
5 | 0 | 7 | - | - | - | - | - | 0 | - | 6 |
6 | - | - | 2 4 | - | - | - | - | - | 4 | 6 |
7 | 0 | - | - | 5 | - | - | - | 10 | 5 | - |
8 | - | - | - | - | 0 | - | 2 | - | 6 | 7 |
9 | - | - | - | 2 | - | 8 | 7 | 6 | - | - |
10 | - | 11 | - | - | 6 | 6 | - | 5 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | 0 10 | - | - | - | - |
2 | - | - | - | 8 | - | - | 0 | - | 0 1 | - |
3 | - | - | - | - | 4 | - | - | 0 | - | 0 5 |
4 | 0 | 4 | - | - | - | - | 6 | - | - | 6 |
5 | 0 | - | 8 | - | - | - | - | 6 | 6 | - |
6 | 0 2 | - | - | - | - | - | 10 | 4 | - | - |
7 | - | 0 | - | 6 | - | 2 | - | - | - | 1 |
8 | - | - | 0 | - | 6 | 8 | - | - | 5 | - |
9 | - | 0 11 | - | - | 6 | - | - | 7 | - | - |
10 | - | - | 0 7 | 6 | - | - | 11 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | 0 | 0 | 0 1 | - | - |
2 | 0 | 2 18 | - | - | 0 | - |
3 | 0 | - | 2 18 | - | 14 | - |
4 | 0 19 | - | - | - | - | 11 13 |
5 | - | 0 | 6 | - | - | 1 10 |
6 | - | - | - | 7 9 | 10 19 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 6 14 | - | - | - | 0 1 | - |
2 | - | - | 0 6 | 0 | 5 | - |
3 | - | 0 14 | - | 19 | 10 | - |
4 | - | 0 | 1 | - | - | 5 16 |
5 | 0 19 | 15 | 10 | - | - | - |
6 | - | - | - | 4 15 | - | 6 14 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 2 18 | - | - | 0 | - | 0 |
2 | - | 1 19 | - | 9 | - | 12 |
3 | - | - | 2 18 | 12 | - | 6 |
4 | 0 | 11 | 8 | - | 19 | - |
5 | - | - | - | 1 | 9 11 | 2 |
6 | 0 | 8 | 14 | - | 18 | - |