[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 120, 46 ]. See Glossary for some
detail.
UG(ATD[120, 67]) = UG(ATD[120, 68]) = MG(Rmap(120, 19) { 5, 12| 20}_ 20)
= DG(Rmap(120, 19) { 5, 12| 20}_ 20) = DG(Rmap(120, 32) { 5, 20| 12}_ 12) =
AT[120, 21]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 | - | 0 | - | - | - |
2 | 0 | - | 1 | - | - | 1 | 5 | - | - | - |
3 | - | 11 | - | 0 | - | - | - | - | 2 4 | - |
4 | 0 | - | 0 | - | 7 | - | - | 4 | - | - |
5 | 0 | - | - | 5 | - | - | - | 5 | - | 0 |
6 | - | 11 | - | - | - | - | 0 | - | 0 | 1 |
7 | 0 | 7 | - | - | - | 0 | - | - | - | 2 |
8 | - | - | - | 8 | 7 | - | - | - | 2 | 8 |
9 | - | - | 8 10 | - | - | 0 | - | 10 | - | - |
10 | - | - | - | - | 0 | 11 | 10 | 4 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 11 | - | - | - | 0 | 0 | - | - | - | - |
2 | - | - | - | - | 8 | 9 | 0 | 0 | - | - |
3 | - | - | - | 0 | - | - | 9 | - | 0 | 0 |
4 | - | - | 0 | - | - | - | - | 9 | 8 | 3 |
5 | 0 | 4 | - | - | - | 9 | - | 7 | - | - |
6 | 0 | 3 | - | - | 3 | - | 0 | - | - | - |
7 | - | 0 | 3 | - | - | 0 | - | - | 0 | - |
8 | - | 0 | - | 3 | 5 | - | - | - | 2 | - |
9 | - | - | 0 | 4 | - | - | 0 | 10 | - | - |
10 | - | - | 0 | 9 | - | - | - | - | - | 5 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | 0 1 | 0 | - | - | - |
2 | 0 | - | 11 | - | - | - | 4 | 11 | - | - |
3 | - | 1 | - | 5 | - | - | - | - | 3 5 | - |
4 | - | - | 7 | - | 11 | 1 | - | - | - | 11 |
5 | - | - | - | 1 | - | - | - | 0 7 | - | 4 |
6 | 0 11 | - | - | 11 | - | - | - | - | - | 9 |
7 | 0 | 8 | - | - | - | - | - | 0 | 2 | - |
8 | - | 1 | - | - | 0 5 | - | 0 | - | - | - |
9 | - | - | 7 9 | - | - | - | 10 | - | - | 3 |
10 | - | - | - | 1 | 8 | 3 | - | - | 9 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 4 16 | - | - | - | 0 1 | - |
2 | - | - | 0 6 | 0 | 5 | - |
3 | - | 0 14 | - | 9 | 0 | - |
4 | - | 0 | 11 | - | - | 6 17 |
5 | 0 19 | 15 | 0 | - | - | - |
6 | - | - | - | 3 14 | - | 4 16 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 8 12 | - | - | 0 | - | 0 |
2 | - | 1 19 | - | 1 | - | 8 |
3 | - | - | 8 12 | 8 | - | 14 |
4 | 0 | 19 | 12 | - | 1 | - |
5 | - | - | - | 19 | 9 11 | 8 |
6 | 0 | 12 | 6 | - | 12 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | 0 1 | 0 | 0 | - | - |
2 | 0 19 | - | - | - | 0 18 | - |
3 | 0 | - | 8 12 | - | - | 7 |
4 | 0 | - | - | 8 12 | - | 1 |
5 | - | 0 2 | - | - | - | 0 9 |
6 | - | - | 13 | 19 | 0 11 | - |