[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 120, 49 ] =
SDD(Pr_10(1,1,2,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<120|{ {39, 61}, {32, 61}, {32, 62}, {32, 63}, {25, 62}, {17, 63}, {4,
62}, {5, 63}, {1, 61}, {1, 63}, {1, 62}, {2, 61}, {3, 67}, {53, 117}, {46, 110},
{24, 88}, {16, 80}, {27, 91}, {28, 92}, {35, 99}, {38, 102}, {41, 105}, {42,
106}, {7, 70}, {22, 87}, {9, 72}, {11, 73}, {52, 118}, {51, 113}, {44, 110},
{41, 107}, {1, 66}, {59, 120}, {47, 108}, {46, 109}, {24, 91}, {20, 87}, {10,
73}, {3, 64}, {2, 65}, {27, 88}, {36, 103}, {12, 72}, {60, 120}, {55, 115}, {25,
93}, {18, 86}, {30, 90}, {34, 102}, {4, 65}, {52, 113}, {51, 118}, {50, 119},
{48, 117}, {47, 106}, {43, 110}, {22, 83}, {20, 81}, {19, 86}, {8, 77}, {2, 68},
{43, 109}, {42, 108}, {26, 92}, {19, 85}, {18, 84}, {6, 64}, {3, 69}, {21, 82},
{30, 89}, {2, 74}, {60, 116}, {59, 115}, {15, 71}, {14, 70}, {10, 66}, {3, 75},
{29, 85}, {41, 97}, {11, 66}, {57, 112}, {56, 113}, {13, 68}, {4, 78}, {9, 67},
{5, 79}, {34, 104}, {42, 96}, {7, 76}, {60, 119}, {57, 114}, {29, 86}, {5, 73},
{59, 119}, {8, 69}, {45, 96}, {23, 90}, {21, 88}, {35, 110}, {37, 104}, {6, 72},
{23, 89}, {8, 71}, {60, 115}, {59, 116}, {57, 118}, {47, 96}, {44, 99}, {22,
89}, {17, 94}, {16, 95}, {12, 67}, {16, 64}, {54, 102}, {53, 101}, {15, 94},
{58, 107}, {51, 98}, {26, 75}, {27, 74}, {29, 76}, {33, 112}, {13, 95}, {42,
120}, {24, 74}, {30, 77}, {52, 103}, {50, 97}, {33, 114}, {8, 92}, {51, 103},
{31, 75}, {15, 90}, {49, 100}, {48, 101}, {6, 80}, {52, 98}, {13, 91}, {7, 81},
{35, 117}, {36, 114}, {25, 78}, {47, 120}, {28, 75}, {33, 118}, {11, 83}, {53,
109}, {25, 65}, {17, 73}, {16, 72}, {4, 93}, {50, 107}, {44, 117}, {10, 83}, {6,
95}, {23, 77}, {53, 111}, {31, 69}, {5, 94}, {50, 105}, {43, 112}, {14, 85}, {9,
82}, {31, 67}, {48, 109}, {49, 108}, {12, 82}, {55, 105}, {54, 104}, {46, 112},
{17, 79}, {41, 119}, {19, 76}, {58, 101}, {48, 111}, {31, 64}, {49, 81}, {18,
115}, {56, 89}, {55, 86}, {45, 76}, {32, 66}, {58, 88}, {36, 70}, {37, 71}, {38,
68}, {39, 68}, {55, 84}, {40, 77}, {39, 65}, {54, 80}, {49, 87}, {7, 96}, {22,
113}, {15, 104}, {9, 97}, {58, 82}, {10, 98}, {28, 116}, {11, 98}, {14, 103},
{13, 102}, {56, 83}, {45, 70}, {12, 97}, {34, 79}, {39, 74}, {40, 69}, {26,
116}, {33, 78}, {56, 87}, {40, 71}, {19, 99}, {26, 106}, {21, 101}, {20, 100},
{36, 85}, {34, 80}, {23, 100}, {46, 93}, {27, 111}, {40, 92}, {28, 106}, {43,
93}, {24, 111}, {57, 78}, {35, 84}, {20, 108}, {44, 84}, {38, 95}, {54, 79},
{30, 100}, {18, 105}, {37, 94}, {14, 114}, {45, 81}, {38, 91}, {21, 107}, {29,
99}, {37, 90} }>;
(II) A more general form is to represent the graph as the orbit of {39, 61}
under the group generated by the following permutations:
a: (20, 49) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (43, 46)
c: (4, 25)
d: (22, 56)
e: (1, 2)(3, 8)(5, 13)(6, 15)(7, 18)(9, 23)(10, 24)(11, 27)(12, 30)(14, 35)(16,
37)(17, 38)(20, 41)(21, 22)(31, 40)(32, 39)(33, 43)(36, 44)(42, 59)(45, 55)(46,
57)(47, 60)(48, 51)(49, 50)(52, 53)(56, 58)(62, 65)(63, 68)(64, 71)(66, 74)(67,
77)(70, 84)(72, 90)(73, 91)(75, 92)(76, 86)(78, 93)(79, 102)(80, 104)(81,
105)(82, 89)(83, 88)(85, 99)(87, 107)(94, 95)(96, 115)(97, 100)(98, 111)(101,
113)(103, 117)(106, 116)(108, 119)(109, 118)(110, 114)
f: (13, 38)
g: (19, 29)
h: (7, 45)
m: (34, 54)
n1: (41, 50)
a1: (10, 11)
b1: (2, 5)(3, 9)(4, 10)(7, 19)(8, 21)(11, 25)(12, 31)(13, 34)(15, 24)(17,
39)(18, 42)(20, 35)(22, 43)(23, 48)(26, 41)(27, 37)(28, 50)(29, 45)(30, 53)(33,
51)(38, 54)(40, 58)(44, 49)(46, 56)(47, 55)(52, 57)(61, 63)(62, 66)(64, 72)(65,
73)(68, 79)(69, 82)(70, 85)(71, 88)(74, 94)(75, 97)(77, 101)(78, 98)(80, 95)(81,
99)(83, 93)(84, 108)(86, 96)(87, 110)(89, 109)(90, 111)(91, 104)(92, 107)(100,
117)(103, 114)(105, 106)(112, 113)(115, 120)(116, 119)
c1: (33, 57)
d1: (59, 60)
e1: (24, 27)
f1: (2, 39)
g1: (35, 44)
h1: (2, 4)(3, 7)(5, 10)(6, 14)(8, 20)(9, 19)(11, 17)(12, 29)(13, 33)(15, 22)(16,
36)(18, 41)(21, 35)(24, 43)(25, 39)(26, 42)(27, 46)(28, 47)(31, 45)(34, 51)(37,
56)(38, 57)(40, 49)(44, 58)(50, 55)(52, 54)(61, 62)(63, 66)(64, 70)(67, 76)(68,
78)(69, 81)(71, 87)(72, 85)(74, 93)(75, 96)(77, 100)(79, 98)(80, 103)(82,
99)(83, 94)(84, 107)(86, 97)(88, 110)(89, 90)(91, 112)(92, 108)(95, 114)(101,
117)(102, 118)(104, 113)(109, 111)(115, 119)(116, 120)
m1: (42, 47)
n2: (21, 58)
a2: (48, 53)
b2: (6, 16)
c2: (14, 36)
d2: (23, 30)
e2: (26, 28)
f2: (15, 37)
g2: (8, 40)
h2: (18, 55)
m2: (9, 12)
n3: (5, 17)
a3: (51, 52)
C4[ 120, 49 ]
120
-1 66 61 62 63
-2 68 61 74 65
-3 67 69 64 75
-4 78 93 62 65
-5 79 94 73 63
-6 80 72 95 64
-7 70 81 96 76
-8 77 69 92 71
-9 67 82 72 97
-10 66 83 73 98
-11 66 83 73 98
-12 67 82 72 97
-13 68 91 102 95
-14 70 103 114 85
-15 90 71 104 94
-16 80 72 95 64
-17 79 94 73 63
-18 115 105 84 86
-19 99 85 86 76
-20 100 81 108 87
-21 88 101 82 107
-22 89 113 83 87
-23 77 89 100 90
-24 88 111 91 74
-25 78 93 62 65
-26 92 116 106 75
-27 88 111 91 74
-28 92 116 106 75
-29 99 85 86 76
-30 77 89 100 90
-31 67 69 64 75
-32 66 61 62 63
-33 78 112 114 118
-34 79 80 102 104
-35 99 110 84 117
-36 70 103 114 85
-37 90 71 104 94
-38 68 91 102 95
-39 68 61 74 65
-40 77 69 92 71
-41 105 107 97 119
-42 106 96 108 120
-43 110 112 93 109
-44 99 110 84 117
-45 70 81 96 76
-46 110 112 93 109
-47 106 96 108 120
-48 111 101 117 109
-49 100 81 108 87
-50 105 107 97 119
-51 113 103 118 98
-52 113 103 118 98
-53 111 101 117 109
-54 79 80 102 104
-55 115 105 84 86
-56 89 113 83 87
-57 78 112 114 118
-58 88 101 82 107
-59 115 116 119 120
-60 115 116 119 120
-61 1 2 39 32
-62 1 25 4 32
-63 1 5 17 32
-64 3 16 6 31
-65 2 25 4 39
-66 11 1 10 32
-67 12 3 9 31
-68 2 13 38 39
-69 3 40 8 31
-70 45 14 36 7
-71 15 37 40 8
-72 12 16 6 9
-73 11 5 17 10
-74 2 24 27 39
-75 3 26 28 31
-76 45 7 29 19
-77 23 40 8 30
-78 33 57 25 4
-79 34 5 17 54
-80 34 16 6 54
-81 45 49 7 20
-82 12 58 9 21
-83 11 22 56 10
-84 44 55 35 18
-85 14 36 29 19
-86 55 18 29 19
-87 22 56 49 20
-88 24 58 27 21
-89 22 23 56 30
-90 23 15 37 30
-91 13 24 27 38
-92 26 28 40 8
-93 46 25 4 43
-94 15 37 5 17
-95 13 16 38 6
-96 45 47 7 42
-97 12 50 41 9
-98 11 51 52 10
-99 44 35 29 19
-100 23 49 30 20
-101 58 48 53 21
-102 34 13 38 54
-103 14 36 51 52
-104 34 15 37 54
-105 55 50 18 41
-106 47 26 28 42
-107 58 50 41 21
-108 47 49 20 42
-109 46 48 53 43
-110 44 35 46 43
-111 24 48 27 53
-112 33 46 57 43
-113 22 56 51 52
-114 33 57 14 36
-115 55 59 60 18
-116 26 59 60 28
-117 44 35 48 53
-118 33 57 51 52
-119 59 60 50 41
-120 47 59 60 42
0