C4graphGraph forms for C4 [ 120, 52 ] = SDD(Pr_10(2,3,1,4))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 52 ] = SDD(Pr_10(2,3,1,4)).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {57, 61}, {57, 63}, {57, 62}, {54, 62}, {50, 61}, {42, 63}, {4, 63}, {1, 61}, {3, 62}, {1, 63}, {1, 62}, {2, 61}, {1, 65}, {52, 116}, {51, 115}, {19, 83}, {8, 72}, {4, 68}, {3, 67}, {2, 66}, {32, 96}, {33, 97}, {43, 106}, {2, 64}, {48, 114}, {46, 108}, {4, 71}, {59, 120}, {44, 111}, {43, 104}, {23, 84}, {12, 79}, {27, 88}, {29, 94}, {31, 92}, {37, 102}, {38, 101}, {39, 100}, {13, 73}, {60, 120}, {41, 109}, {15, 75}, {14, 74}, {3, 70}, {22, 83}, {20, 81}, {7, 66}, {5, 64}, {28, 89}, {35, 101}, {55, 113}, {48, 118}, {47, 105}, {36, 98}, {37, 99}, {2, 69}, {41, 110}, {21, 82}, {6, 65}, {29, 90}, {3, 75}, {44, 100}, {22, 94}, {18, 90}, {7, 79}, {6, 78}, {5, 77}, {4, 76}, {30, 86}, {17, 88}, {32, 105}, {43, 97}, {58, 112}, {8, 67}, {40, 99}, {39, 108}, {12, 71}, {34, 105}, {38, 109}, {18, 94}, {60, 112}, {19, 95}, {5, 72}, {60, 113}, {26, 87}, {24, 85}, {16, 93}, {11, 70}, {9, 68}, {7, 74}, {21, 91}, {59, 117}, {41, 103}, {35, 109}, {6, 73}, {47, 96}, {25, 86}, {20, 91}, {10, 69}, {39, 119}, {59, 107}, {5, 84}, {55, 102}, {11, 90}, {9, 88}, {7, 86}, {30, 79}, {38, 119}, {6, 85}, {48, 99}, {15, 92}, {12, 95}, {10, 89}, {29, 78}, {32, 115}, {37, 118}, {19, 71}, {30, 74}, {35, 119}, {36, 112}, {14, 91}, {53, 96}, {36, 113}, {27, 77}, {48, 102}, {34, 116}, {37, 114}, {46, 118}, {9, 80}, {11, 82}, {56, 98}, {10, 81}, {46, 117}, {14, 82}, {51, 111}, {47, 115}, {19, 79}, {18, 78}, {17, 77}, {16, 76}, {30, 66}, {36, 120}, {13, 80}, {52, 106}, {60, 98}, {8, 87}, {58, 101}, {52, 107}, {21, 74}, {12, 83}, {24, 120}, {52, 84}, {45, 77}, {16, 113}, {56, 89}, {13, 111}, {53, 87}, {51, 81}, {22, 116}, {17, 114}, {23, 116}, {49, 85}, {33, 68}, {45, 72}, {44, 73}, {14, 104}, {58, 92}, {42, 76}, {20, 115}, {8, 96}, {51, 91}, {11, 99}, {10, 98}, {9, 97}, {13, 100}, {56, 81}, {27, 114}, {15, 101}, {55, 93}, {25, 117}, {24, 117}, {45, 64}, {42, 71}, {26, 119}, {40, 70}, {59, 85}, {42, 68}, {25, 118}, {39, 87}, {54, 70}, {50, 66}, {49, 65}, {41, 89}, {28, 109}, {58, 75}, {33, 80}, {34, 83}, {28, 110}, {50, 64}, {47, 93}, {40, 90}, {24, 107}, {29, 110}, {25, 108}, {54, 67}, {31, 106}, {16, 102}, {53, 67}, {17, 103}, {26, 108}, {31, 104}, {50, 69}, {43, 92}, {46, 86}, {57, 65}, {49, 73}, {33, 88}, {45, 84}, {38, 95}, {40, 82}, {20, 111}, {55, 76}, {28, 103}, {18, 110}, {44, 80}, {23, 107}, {27, 103}, {34, 94}, {35, 95}, {21, 104}, {56, 69}, {54, 75}, {53, 72}, {23, 106}, {32, 93}, {26, 100}, {31, 97}, {15, 112}, {49, 78}, {22, 105} }>;

(II) A more general form is to represent the graph as the orbit of {57, 61} under the group generated by the following permutations:

a: (14, 21)
b: (2, 6)(5, 18)(7, 13)(8, 11)(9, 12)(10, 24)(14, 26)(17, 22)(19, 33)(20, 25)(21, 39)(23, 28)(27, 34)(29, 45)(30, 44)(31, 35)(32, 37)(38, 43)(40, 53)(41, 52)(46, 51)(47, 48)(49, 50)(56, 59)(61, 65)(64, 78)(66, 73)(67, 70)(68, 71)(69, 85)(72, 90)(74, 100)(77, 94)(79, 80)(81, 117)(82, 87)(83, 88)(84, 110)(86, 111)(89, 107)(91, 108)(92, 101)(93, 102)(95, 97)(96, 99)(98, 120)(103, 116)(104, 119)(105, 114)(106, 109)(115, 118)
c: (3, 54)
d: (36, 60)
e: (7, 30)
f: (28, 41)
g: (22, 34)
h: (15, 58)
m: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(13, 20)(15, 23)(16, 25)(18, 28)(21, 33)(22, 35)(24, 36)(26, 32)(27, 40)(29, 41)(30, 42)(34, 38)(39, 47)(44, 51)(45, 54)(46, 55)(49, 56)(50, 57)(52, 58)(59, 60)(62, 64)(63, 66)(65, 69)(67, 72)(68, 74)(70, 77)(71, 79)(73, 81)(75, 84)(76, 86)(78, 89)(80, 91)(82, 88)(83, 95)(85, 98)(87, 96)(90, 103)(92, 106)(93, 108)(94, 109)(97, 104)(99, 114)(100, 115)(101, 116)(102, 118)(105, 119)(107, 112)(113, 117)
n1: (18, 29)
a1: (16, 55)
b1: (31, 43)
c1: (2, 50)
d1: (24, 59)
e1: (2, 6)(3, 4)(5, 13)(7, 18)(8, 9)(10, 24)(11, 12)(14, 22)(15, 16)(17, 26)(19, 40)(20, 23)(21, 34)(25, 28)(27, 39)(29, 30)(31, 32)(33, 53)(35, 37)(38, 48)(41, 46)(42, 54)(43, 47)(44, 45)(49, 50)(51, 52)(55, 58)(56, 59)(61, 65)(62, 63)(64, 73)(66, 78)(67, 68)(69, 85)(70, 71)(72, 80)(74, 94)(75, 76)(77, 100)(79, 90)(81, 107)(82, 83)(84, 111)(86, 110)(87, 88)(89, 117)(91, 116)(92, 93)(95, 99)(96, 97)(98, 120)(101, 102)(103, 108)(104, 105)(106, 115)(109, 118)(112, 113)(114, 119)
f1: (8, 53)
g1: (9, 33)
h1: (35, 38)
m1: (23, 52)
n2: (12, 19)
a2: (17, 27)
b2: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(16, 24)(17, 26)(19, 29)(20, 31)(23, 32)(25, 37)(27, 39)(28, 35)(30, 40)(33, 44)(38, 41)(42, 49)(43, 51)(45, 53)(46, 48)(47, 52)(50, 54)(55, 59)(56, 58)(61, 62)(63, 65)(64, 67)(66, 70)(68, 73)(69, 75)(71, 78)(74, 82)(76, 85)(77, 87)(79, 90)(81, 92)(83, 94)(84, 96)(86, 99)(88, 100)(89, 101)(91, 104)(93, 107)(95, 110)(97, 111)(98, 112)(102, 117)(103, 119)(105, 116)(106, 115)(108, 114)(113, 120)
c2: (5, 45)
d2: (25, 46)
e2: (4, 42)
f2: (11, 40)
g2: (10, 56)
h2: (6, 49)
m2: (32, 47)
n3: (37, 48)
a3: (26, 39)
b3: (13, 44)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 52 ]
120
-1 61 62 63 65
-2 66 69 61 64
-3 67 70 62 75
-4 68 71 63 76
-5 77 72 84 64
-6 78 73 85 65
-7 66 79 74 86
-8 67 72 96 87
-9 88 68 80 97
-10 89 69 81 98
-11 99 90 70 82
-12 79 71 83 95
-13 100 111 80 73
-14 91 82 104 74
-15 101 112 92 75
-16 102 113 93 76
-17 77 88 103 114
-18 110 78 90 94
-19 79 71 83 95
-20 111 91 81 115
-21 91 82 104 74
-22 105 94 116 83
-23 116 84 106 107
-24 117 85 107 120
-25 117 118 86 108
-26 100 108 119 87
-27 77 88 103 114
-28 110 89 103 109
-29 110 78 90 94
-30 66 79 74 86
-31 92 104 106 97
-32 93 115 105 96
-33 88 68 80 97
-34 105 94 116 83
-35 101 95 119 109
-36 112 113 98 120
-37 99 102 114 118
-38 101 95 119 109
-39 100 108 119 87
-40 99 90 70 82
-41 110 89 103 109
-42 68 71 63 76
-43 92 104 106 97
-44 100 111 80 73
-45 77 72 84 64
-46 117 118 86 108
-47 93 115 105 96
-48 99 102 114 118
-49 78 73 85 65
-50 66 69 61 64
-51 111 91 81 115
-52 116 84 106 107
-53 67 72 96 87
-54 67 70 62 75
-55 102 113 93 76
-56 89 69 81 98
-57 61 62 63 65
-58 101 112 92 75
-59 117 85 107 120
-60 112 113 98 120
-61 1 2 57 50
-62 1 57 3 54
-63 1 57 4 42
-64 45 2 5 50
-65 1 57 49 6
-66 2 50 7 30
-67 3 8 53 54
-68 33 4 9 42
-69 56 2 50 10
-70 11 3 40 54
-71 12 4 19 42
-72 45 5 8 53
-73 44 13 49 6
-74 14 7 30 21
-75 3 58 15 54
-76 55 4 16 42
-77 45 5 27 17
-78 49 6 18 29
-79 12 7 19 30
-80 33 44 13 9
-81 56 51 20 10
-82 11 14 40 21
-83 22 12 34 19
-84 23 45 5 52
-85 24 59 49 6
-86 46 25 7 30
-87 26 39 8 53
-88 33 27 17 9
-89 56 28 41 10
-90 11 18 29 40
-91 14 51 20 21
-92 58 15 31 43
-93 55 47 16 32
-94 22 34 18 29
-95 12 35 38 19
-96 47 8 53 32
-97 33 9 31 43
-98 56 36 60 10
-99 11 37 48 40
-100 44 13 26 39
-101 35 58 15 38
-102 55 37 48 16
-103 27 17 28 41
-104 14 31 21 43
-105 22 34 47 32
-106 23 52 31 43
-107 23 24 59 52
-108 46 25 26 39
-109 35 38 28 41
-110 28 18 29 41
-111 44 13 51 20
-112 36 58 15 60
-113 55 36 16 60
-114 37 48 27 17
-115 47 51 20 32
-116 22 23 34 52
-117 24 46 25 59
-118 46 25 37 48
-119 35 26 38 39
-120 24 36 59 60
0

**************