C4graphGraph forms for C4 [ 120, 60 ] = PL(CS(Pr_5(1,1,2,2)[3^10],1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 60 ] = PL(CS(Pr_5(1,1,2,2)[3^10],1)).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {24, 61}, {22, 63}, {21, 63}, {23, 61}, {6, 62}, {6, 63}, {5, 63}, {5, 62}, {1, 61}, {2, 62}, {1, 62}, {2, 61}, {3, 67}, {10, 74}, {2, 67}, {10, 75}, {12, 77}, {57, 120}, {3, 65}, {4, 70}, {9, 75}, {12, 78}, {3, 64}, {4, 71}, {9, 74}, {16, 83}, {4, 64}, {60, 120}, {8, 76}, {11, 79}, {16, 84}, {18, 86}, {19, 87}, {42, 110}, {43, 111}, {4, 65}, {7, 66}, {8, 77}, {10, 79}, {11, 78}, {18, 87}, {19, 86}, {42, 111}, {43, 110}, {1, 71}, {24, 94}, {2, 68}, {7, 65}, {11, 77}, {54, 112}, {1, 70}, {24, 95}, {3, 68}, {48, 119}, {53, 114}, {55, 112}, {5, 77}, {16, 88}, {17, 89}, {48, 120}, {5, 76}, {8, 65}, {16, 89}, {47, 102}, {8, 66}, {32, 106}, {21, 95}, {22, 92}, {47, 101}, {56, 114}, {57, 115}, {17, 90}, {32, 107}, {31, 84}, {21, 94}, {23, 92}, {43, 96}, {6, 74}, {34, 110}, {30, 82}, {29, 81}, {23, 91}, {44, 96}, {46, 98}, {58, 118}, {7, 74}, {35, 110}, {20, 89}, {22, 91}, {46, 99}, {59, 118}, {7, 73}, {35, 109}, {20, 90}, {45, 99}, {59, 117}, {6, 73}, {60, 115}, {34, 109}, {30, 81}, {29, 82}, {45, 98}, {58, 117}, {31, 79}, {60, 108}, {33, 113}, {57, 105}, {58, 106}, {26, 75}, {33, 112}, {53, 100}, {55, 102}, {25, 75}, {38, 116}, {37, 119}, {28, 78}, {27, 73}, {54, 100}, {20, 71}, {37, 118}, {39, 116}, {51, 96}, {57, 106}, {58, 105}, {13, 89}, {39, 115}, {36, 112}, {17, 69}, {19, 71}, {52, 96}, {13, 88}, {38, 115}, {36, 113}, {28, 73}, {27, 78}, {25, 76}, {17, 68}, {21, 64}, {23, 66}, {45, 120}, {48, 101}, {54, 99}, {56, 109}, {18, 68}, {26, 76}, {22, 64}, {48, 102}, {53, 99}, {55, 97}, {18, 69}, {59, 108}, {14, 86}, {41, 113}, {52, 108}, {53, 109}, {55, 111}, {15, 86}, {54, 111}, {56, 97}, {9, 83}, {24, 66}, {10, 80}, {15, 85}, {45, 119}, {46, 116}, {47, 117}, {49, 107}, {50, 104}, {51, 105}, {9, 82}, {60, 103}, {11, 80}, {14, 85}, {15, 84}, {19, 72}, {41, 114}, {46, 117}, {47, 116}, {50, 105}, {51, 104}, {13, 81}, {15, 83}, {20, 72}, {59, 103}, {13, 80}, {44, 113}, {49, 108}, {12, 82}, {14, 80}, {40, 118}, {44, 114}, {56, 102}, {12, 83}, {14, 81}, {40, 119}, {52, 107}, {37, 69}, {38, 70}, {40, 72}, {37, 70}, {38, 69}, {39, 67}, {51, 91}, {40, 67}, {49, 93}, {50, 94}, {32, 79}, {39, 72}, {49, 94}, {50, 93}, {52, 91}, {36, 85}, {44, 95}, {32, 84}, {41, 93}, {43, 95}, {34, 87}, {41, 92}, {29, 107}, {35, 85}, {33, 87}, {30, 104}, {42, 92}, {29, 106}, {31, 104}, {42, 93}, {26, 98}, {31, 103}, {28, 100}, {27, 98}, {35, 90}, {33, 88}, {30, 103}, {28, 101}, {27, 97}, {34, 88}, {26, 97}, {25, 101}, {25, 100}, {36, 90} }>;

(II) A more general form is to represent the graph as the orbit of {24, 61} under the group generated by the following permutations:

a: (33, 34)(35, 36)(41, 42)(43, 44)(53, 54)(55, 56)(109, 112)(110, 113)(111, 114)
b: (9, 10)(11, 12)(13, 16)(14, 15)(29, 32)(30, 31)(79, 82)(80, 83)(81, 84)
c: (29, 30)(31, 32)(37, 38)(39, 40)(45, 46)(47, 48)(49, 50)(51, 52)(57, 59)(58, 60)(103, 106)(104, 107)(105, 108)(115, 118)(116, 119)(117, 120)
d: (13, 14)(15, 16)(17, 18)(19, 20)(33, 36)(34, 35)(85, 88)(86, 89)(87, 90)
e: (21, 22)(23, 24)(41, 44)(42, 43)(49, 52)(50, 51)(91, 94)(92, 95)(93, 96)
f: (37, 38)(39, 40)(45, 46)(47, 48)(57, 58)(59, 60)(115, 118)(116, 119)(117, 120)
g: (5, 6)(7, 8)(9, 25)(10, 26)(11, 27)(12, 28)(13, 45)(14, 46)(15, 47)(16, 48)(17, 40)(18, 39)(19, 38)(20, 37)(21, 22)(23, 24)(29, 54, 30, 53)(31, 56, 32, 55)(33, 60, 34, 57)(35, 58, 36, 59)(41, 49, 42, 50)(43, 51, 44, 52)(67, 68)(69, 72)(70, 71)(73, 77)(74, 76)(79, 97)(80, 98)(81, 99)(82, 100)(83, 101)(84, 102)(85, 117)(86, 116)(87, 115)(88, 120)(89, 119)(90, 118)(91, 95)(92, 94)(103, 109, 106, 112)(104, 114, 107, 111)(105, 113, 108, 110)
h: (25, 26)(27, 28)(33, 34)(35, 36)(41, 42)(43, 44)(45, 48)(46, 47)(53, 55)(54, 56)(97, 100)(98, 101)(99, 102)(109, 112)(110, 113)(111, 114)
m: (1, 5, 12, 16, 20)(2, 8, 9, 13, 19)(3, 7, 10, 14, 18)(4, 6, 11, 15, 17)(21, 28, 32, 36, 37)(22, 27, 31, 35, 38)(23, 26, 30, 34, 39)(24, 25, 29, 33, 40)(41, 45, 50, 53, 57)(42, 46, 51, 56, 60)(43, 47, 52, 55, 59)(44, 48, 49, 54, 58)(61, 76, 82, 88, 72)(62, 77, 83, 89, 71)(63, 78, 84, 90, 70)(64, 73, 79, 85, 69)(65, 74, 80, 86, 68)(66, 75, 81, 87, 67)(91, 97, 103, 110, 116)(92, 98, 104, 109, 115)(93, 99, 105, 114, 120)(94, 100, 106, 113, 119)(95, 101, 107, 112, 118)(96, 102, 108, 111, 117)
n1: (5, 6)(7, 8)(9, 11)(10, 12)(13, 16)(14, 15)(25, 28)(26, 27)(29, 32)(30, 31)(73, 76)(74, 77)(75, 78)(79, 82)(80, 83)(81, 84)
a1: (1, 2)(3, 4)(17, 20)(18, 19)(37, 40)(38, 39)(67, 70)(68, 71)(69, 72)
b1: (2, 4)(5, 19, 6, 20)(7, 17, 8, 18)(9, 13, 12, 14)(10, 16, 11, 15)(21, 40, 22, 39)(23, 38, 24, 37)(25, 34, 28, 35)(26, 33, 27, 36)(41, 46, 44, 45)(42, 47, 43, 48)(49, 58, 52, 57)(50, 59, 51, 60)(54, 56)(61, 70)(62, 71)(63, 72)(64, 67)(65, 68)(66, 69)(73, 90, 76, 87)(74, 89, 77, 86)(75, 88, 78, 85)(79, 84)(80, 83)(81, 82)(91, 115, 94, 118)(92, 116, 95, 119)(93, 117, 96, 120)(97, 112)(98, 113)(99, 114)(100, 109)(101, 110)(102, 111)(103, 104)(105, 108)(106, 107)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 60 ]
120
-1 70 71 61 62
-2 67 68 61 62
-3 67 68 64 65
-4 70 71 64 65
-5 77 62 63 76
-6 62 73 63 74
-7 66 73 74 65
-8 66 77 65 76
-9 82 83 74 75
-10 79 80 74 75
-11 77 78 79 80
-12 77 78 82 83
-13 88 89 80 81
-14 80 81 85 86
-15 83 84 85 86
-16 88 89 83 84
-17 89 68 90 69
-18 68 69 86 87
-19 71 72 86 87
-20 89 90 71 72
-21 94 95 63 64
-22 91 92 63 64
-23 66 91 92 61
-24 66 61 94 95
-25 100 101 75 76
-26 75 97 76 98
-27 78 73 97 98
-28 78 100 101 73
-29 81 82 106 107
-30 81 103 82 104
-31 79 103 104 84
-32 79 84 106 107
-33 88 112 113 87
-34 88 110 87 109
-35 110 90 85 109
-36 90 112 113 85
-37 69 70 118 119
-38 69 70 115 116
-39 67 115 72 116
-40 67 72 118 119
-41 113 92 114 93
-42 110 111 92 93
-43 110 111 95 96
-44 113 114 95 96
-45 99 119 98 120
-46 99 116 117 98
-47 101 102 116 117
-48 101 102 119 120
-49 93 94 107 108
-50 93 104 94 105
-51 91 104 105 96
-52 91 96 107 108
-53 99 100 114 109
-54 99 100 111 112
-55 111 112 102 97
-56 102 114 97 109
-57 115 105 106 120
-58 105 106 117 118
-59 103 117 118 108
-60 103 115 108 120
-61 1 23 2 24
-62 1 2 5 6
-63 22 5 6 21
-64 22 3 4 21
-65 3 4 7 8
-66 23 24 7 8
-67 2 3 39 40
-68 2 3 17 18
-69 37 38 17 18
-70 1 4 37 38
-71 1 4 19 20
-72 39 40 19 20
-73 27 6 28 7
-74 6 7 9 10
-75 25 26 9 10
-76 25 26 5 8
-77 11 12 5 8
-78 11 12 27 28
-79 11 31 10 32
-80 11 13 14 10
-81 13 14 29 30
-82 12 29 30 9
-83 12 15 16 9
-84 15 16 31 32
-85 35 14 36 15
-86 14 15 18 19
-87 33 34 18 19
-88 33 34 13 16
-89 13 16 17 20
-90 35 36 17 20
-91 22 23 51 52
-92 22 23 41 42
-93 49 50 41 42
-94 24 49 50 21
-95 44 24 21 43
-96 44 51 52 43
-97 55 56 26 27
-98 45 46 26 27
-99 45 46 53 54
-100 25 28 53 54
-101 25 47 48 28
-102 55 56 47 48
-103 59 60 30 31
-104 50 51 30 31
-105 57 58 50 51
-106 57 58 29 32
-107 49 29 52 32
-108 59 49 60 52
-109 34 56 35 53
-110 34 35 42 43
-111 55 42 43 54
-112 33 55 36 54
-113 33 44 36 41
-114 44 56 41 53
-115 57 38 60 39
-116 46 47 38 39
-117 46 47 58 59
-118 58 37 59 40
-119 45 37 48 40
-120 45 57 48 60
0

**************