C4graphGraph forms for C4 [ 120, 63 ] = SDD(Pr_10(1,4,3,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 63 ] = SDD(Pr_10(1,4,3,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {10, 63}, {9, 63}, {8, 63}, {6, 62}, {4, 61}, {7, 62}, {5, 63}, {5, 62}, {1, 61}, {3, 61}, {1, 62}, {2, 61}, {9, 73}, {49, 113}, {43, 107}, {42, 106}, {40, 105}, {45, 108}, {45, 111}, {51, 113}, {47, 109}, {46, 108}, {36, 103}, {52, 119}, {41, 106}, {2, 70}, {60, 120}, {55, 115}, {3, 71}, {34, 102}, {35, 103}, {10, 79}, {53, 112}, {32, 101}, {12, 74}, {55, 113}, {54, 112}, {33, 102}, {53, 114}, {48, 119}, {44, 107}, {8, 64}, {15, 71}, {4, 77}, {7, 78}, {11, 65}, {60, 118}, {57, 115}, {56, 114}, {50, 120}, {11, 64}, {12, 64}, {59, 119}, {58, 118}, {57, 117}, {56, 116}, {14, 66}, {13, 64}, {37, 104}, {6, 72}, {59, 117}, {58, 116}, {54, 120}, {15, 65}, {30, 80}, {31, 81}, {38, 104}, {39, 105}, {14, 65}, {16, 95}, {15, 95}, {27, 75}, {20, 68}, {18, 66}, {36, 116}, {14, 95}, {29, 76}, {19, 66}, {16, 65}, {33, 112}, {34, 115}, {12, 94}, {24, 74}, {23, 69}, {17, 67}, {32, 114}, {35, 113}, {13, 94}, {28, 79}, {23, 68}, {17, 66}, {38, 117}, {9, 93}, {44, 120}, {11, 95}, {39, 115}, {8, 93}, {22, 67}, {11, 94}, {8, 94}, {21, 67}, {10, 93}, {25, 78}, {20, 67}, {37, 114}, {3, 91}, {46, 118}, {30, 70}, {5, 93}, {31, 71}, {2, 91}, {28, 69}, {5, 92}, {1, 91}, {18, 72}, {6, 92}, {7, 92}, {52, 111}, {29, 70}, {22, 77}, {16, 75}, {21, 73}, {51, 111}, {50, 110}, {26, 70}, {24, 68}, {1, 92}, {48, 109}, {42, 119}, {25, 68}, {13, 80}, {41, 116}, {27, 69}, {43, 117}, {40, 118}, {4, 91}, {49, 110}, {47, 112}, {26, 69}, {19, 76}, {6, 102}, {51, 83}, {47, 79}, {46, 78}, {44, 77}, {53, 84}, {49, 80}, {49, 83}, {59, 89}, {58, 88}, {55, 85}, {51, 81}, {50, 80}, {13, 110}, {45, 78}, {40, 75}, {12, 104}, {60, 88}, {55, 83}, {54, 82}, {41, 76}, {52, 81}, {2, 100}, {60, 90}, {43, 77}, {3, 101}, {42, 76}, {10, 109}, {53, 82}, {32, 71}, {50, 90}, {33, 72}, {48, 89}, {15, 101}, {34, 72}, {35, 73}, {7, 108}, {38, 74}, {59, 87}, {58, 86}, {57, 85}, {56, 84}, {54, 90}, {39, 75}, {36, 73}, {52, 89}, {9, 103}, {57, 87}, {56, 86}, {14, 96}, {4, 107}, {37, 74}, {17, 97}, {24, 104}, {30, 110}, {31, 111}, {35, 83}, {40, 88}, {17, 96}, {28, 109}, {37, 84}, {38, 87}, {18, 96}, {27, 105}, {21, 103}, {36, 86}, {39, 85}, {19, 96}, {33, 82}, {42, 89}, {18, 102}, {23, 99}, {21, 97}, {32, 84}, {20, 97}, {25, 108}, {23, 98}, {20, 98}, {46, 88}, {44, 90}, {22, 97}, {29, 106}, {34, 85}, {27, 99}, {16, 105}, {29, 100}, {26, 99}, {19, 106}, {24, 98}, {30, 100}, {31, 101}, {25, 98}, {43, 87}, {45, 81}, {22, 107}, {47, 82}, {26, 100}, {28, 99}, {48, 79}, {41, 86} }>;

(II) A more general form is to represent the graph as the orbit of {10, 63} under the group generated by the following permutations:

a: (86, 116)
b: (87, 117)
c: (88, 118)
d: (83, 113)
e: (69, 99)
f: (67, 97)
g: (65, 95)
h: (72, 102)
m: (68, 98)
n1: (85, 115)
a1: (79, 109)
b1: (62, 92)
c1: (71, 101)
d1: (61, 91)
e1: (1, 3)(2, 4)(5, 32)(6, 15)(7, 31)(8, 53)(9, 56)(10, 37)(11, 33)(12, 47)(13, 54)(14, 18)(16, 34)(17, 19)(20, 42)(21, 41)(22, 29)(23, 59)(24, 48)(25, 52)(26, 43)(27, 57)(28, 38)(30, 44)(35, 58)(40, 55)(46, 51)(49, 60)(62, 71)(63, 84)(64, 82)(65, 72)(67, 76)(68, 89)(69, 87)(70, 77)(73, 86)(74, 79)(75, 85)(78, 81)(80, 90)(83, 88)(92, 101)(93, 114)(94, 112)(95, 102)(97, 106)(98, 119)(99, 117)(100, 107)(103, 116)(104, 109)(105, 115)(108, 111)(110, 120)(113, 118)
f1: (84, 114)
g1: (63, 93)
h1: (73, 103)
m1: (76, 106)
n2: (70, 100)
a2: (81, 111)
b2: (89, 119)
c2: (77, 107)
d2: (66, 96)
e2: (80, 110)
f2: (90, 120)
g2: (82, 112)
h2: (64, 94)
m2: (75, 105)
n3: (2, 5)(3, 7)(4, 6)(8, 26)(9, 29)(10, 30)(11, 23)(12, 27)(13, 28)(14, 20)(15, 25)(16, 24)(18, 22)(19, 21)(31, 45)(32, 46)(33, 44)(34, 43)(35, 42)(36, 41)(37, 40)(38, 39)(47, 50)(48, 49)(51, 52)(53, 60)(55, 59)(56, 58)(61, 62)(63, 70)(64, 69)(65, 68)(66, 67)(71, 78)(72, 77)(73, 76)(74, 75)(79, 80)(82, 90)(83, 89)(84, 88)(85, 87)(91, 92)(93, 100)(94, 99)(95, 98)(96, 97)(101, 108)(102, 107)(103, 106)(104, 105)(109, 110)(112, 120)(113, 119)(114, 118)(115, 117)
a3: (78, 108)
b3: (1, 2, 26, 23, 20, 17, 14, 11, 8, 5)(3, 30, 28, 25, 22, 19, 16, 12, 9, 6)(4, 29, 27, 24, 21, 18, 15, 13, 10, 7)(31, 50, 48, 46, 43, 41, 39, 37, 35, 33)(32, 49, 47, 45, 44, 42, 40, 38, 36, 34)(51, 54, 52, 60, 59, 58, 57, 56, 55, 53)(61, 70, 69, 68, 67, 66, 65, 64, 63, 62)(71, 80, 79, 78, 77, 76, 75, 74, 73, 72)(81, 90, 89, 88, 87, 86, 85, 84, 83, 82)(91, 100, 99, 98, 97, 96, 95, 94, 93, 92)(101, 110, 109, 108, 107, 106, 105, 104, 103, 102)(111, 120, 119, 118, 117, 116, 115, 114, 113, 112)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 63 ]
120
-1 91 92 61 62
-2 100 91 70 61
-3 101 91 71 61
-4 77 91 61 107
-5 92 93 62 63
-6 102 92 72 62
-7 78 92 62 108
-8 93 94 63 64
-9 103 93 73 63
-10 79 93 63 109
-11 94 95 64 65
-12 104 94 74 64
-13 110 80 94 64
-14 66 95 96 65
-15 101 71 95 65
-16 105 95 75 65
-17 66 67 96 97
-18 66 102 72 96
-19 66 106 96 76
-20 67 68 97 98
-21 67 103 73 97
-22 77 67 107 97
-23 99 68 69 98
-24 68 104 74 98
-25 78 68 108 98
-26 99 100 69 70
-27 99 69 105 75
-28 99 79 69 109
-29 100 70 106 76
-30 110 100 80 70
-31 111 101 81 71
-32 101 114 71 84
-33 112 102 82 72
-34 102 115 72 85
-35 113 103 83 73
-36 103 116 73 86
-37 114 104 84 74
-38 104 117 74 87
-39 115 105 85 75
-40 88 105 118 75
-41 116 106 86 76
-42 89 106 119 76
-43 77 117 107 87
-44 77 90 107 120
-45 78 111 81 108
-46 88 78 118 108
-47 79 112 82 109
-48 89 79 119 109
-49 110 80 113 83
-50 110 90 80 120
-51 111 113 81 83
-52 89 111 81 119
-53 112 114 82 84
-54 90 112 82 120
-55 113 115 83 85
-56 114 116 84 86
-57 115 117 85 87
-58 88 116 118 86
-59 89 117 119 87
-60 88 90 118 120
-61 1 2 3 4
-62 1 5 6 7
-63 5 8 9 10
-64 11 12 13 8
-65 11 14 15 16
-66 14 17 18 19
-67 22 17 20 21
-68 23 24 25 20
-69 23 26 27 28
-70 2 26 29 30
-71 3 15 31 32
-72 33 34 6 18
-73 35 36 9 21
-74 12 24 37 38
-75 16 27 39 40
-76 29 19 41 42
-77 22 44 4 43
-78 45 46 25 7
-79 47 48 28 10
-80 13 49 50 30
-81 45 51 52 31
-82 33 47 53 54
-83 55 35 49 51
-84 56 37 53 32
-85 55 34 57 39
-86 56 36 58 41
-87 57 59 38 43
-88 46 58 60 40
-89 48 59 52 42
-90 44 60 50 54
-91 1 2 3 4
-92 1 5 6 7
-93 5 8 9 10
-94 11 12 13 8
-95 11 14 15 16
-96 14 17 18 19
-97 22 17 20 21
-98 23 24 25 20
-99 23 26 27 28
-100 2 26 29 30
-101 3 15 31 32
-102 33 34 6 18
-103 35 36 9 21
-104 12 24 37 38
-105 16 27 39 40
-106 29 19 41 42
-107 22 44 4 43
-108 45 46 25 7
-109 47 48 28 10
-110 13 49 50 30
-111 45 51 52 31
-112 33 47 53 54
-113 55 35 49 51
-114 56 37 53 32
-115 55 34 57 39
-116 56 36 58 41
-117 57 59 38 43
-118 46 58 60 40
-119 48 59 52 42
-120 44 60 50 54
0

**************