C4graphGraph forms for C4 [ 120, 66 ] = BGCG(TAG(F10);K2;1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 120, 66 ] = BGCG(TAG(F10);K2;1).

(I) Following is a form readable by MAGMA:

g:=Graph<120|{ {58, 62}, {45, 63}, {41, 61}, {40, 61}, {42, 63}, {36, 62}, {28, 61}, {28, 63}, {16, 63}, {10, 62}, {11, 62}, {6, 61}, {6, 71}, {42, 107}, {27, 90}, {31, 94}, {32, 97}, {33, 96}, {22, 84}, {58, 120}, {48, 114}, {17, 82}, {50, 113}, {44, 111}, {24, 91}, {20, 87}, {38, 101}, {21, 81}, {44, 104}, {1, 68}, {50, 119}, {25, 92}, {24, 93}, {14, 75}, {9, 76}, {27, 94}, {33, 100}, {35, 102}, {38, 99}, {1, 71}, {43, 109}, {22, 80}, {37, 98}, {5, 77}, {56, 112}, {47, 103}, {19, 90}, {45, 100}, {25, 80}, {20, 94}, {57, 115}, {47, 101}, {29, 87}, {36, 110}, {40, 98}, {3, 72}, {51, 120}, {24, 83}, {23, 92}, {18, 89}, {10, 65}, {29, 86}, {39, 108}, {2, 78}, {15, 67}, {14, 66}, {12, 64}, {36, 104}, {18, 95}, {42, 103}, {4, 74}, {22, 88}, {15, 65}, {13, 67}, {11, 69}, {7, 73}, {15, 64}, {38, 105}, {2, 82}, {48, 96}, {28, 77}, {56, 105}, {30, 79}, {38, 119}, {39, 118}, {25, 75}, {52, 102}, {34, 112}, {29, 78}, {37, 118}, {18, 70}, {59, 111}, {37, 113}, {3, 86}, {13, 88}, {30, 72}, {60, 106}, {53, 99}, {35, 117}, {4, 83}, {31, 72}, {42, 114}, {2, 91}, {27, 66}, {21, 76}, {16, 74}, {47, 116}, {53, 110}, {49, 106}, {1, 93}, {49, 109}, {13, 81}, {9, 85}, {5, 89}, {3, 95}, {31, 67}, {41, 116}, {60, 97}, {54, 107}, {49, 108}, {46, 115}, {10, 84}, {26, 68}, {23, 73}, {11, 85}, {16, 79}, {26, 69}, {25, 70}, {2, 98}, {57, 89}, {44, 76}, {12, 108}, {5, 101}, {3, 99}, {6, 103}, {51, 82}, {8, 106}, {54, 84}, {21, 119}, {17, 115}, {9, 107}, {13, 110}, {59, 88}, {52, 87}, {18, 113}, {4, 96}, {57, 93}, {16, 116}, {12, 104}, {7, 97}, {20, 114}, {33, 71}, {46, 73}, {52, 83}, {49, 89}, {54, 94}, {14, 103}, {45, 68}, {31, 117}, {54, 92}, {50, 88}, {48, 90}, {40, 66}, {4, 111}, {10, 97}, {6, 109}, {28, 119}, {34, 73}, {8, 100}, {60, 80}, {55, 91}, {51, 95}, {20, 120}, {15, 99}, {36, 72}, {39, 75}, {29, 112}, {44, 65}, {32, 77}, {35, 78}, {8, 102}, {59, 85}, {53, 91}, {46, 64}, {27, 116}, {50, 93}, {45, 66}, {43, 68}, {37, 74}, {41, 70}, {8, 120}, {26, 106}, {32, 81}, {39, 86}, {7, 117}, {55, 69}, {5, 118}, {23, 100}, {22, 101}, {24, 108}, {58, 78}, {33, 85}, {7, 114}, {48, 69}, {26, 111}, {21, 96}, {34, 84}, {59, 77}, {1, 118}, {17, 102}, {30, 105}, {11, 115}, {57, 65}, {55, 79}, {51, 75}, {19, 107}, {17, 104}, {43, 82}, {35, 90}, {19, 105}, {58, 64}, {23, 109}, {40, 83}, {60, 71}, {56, 67}, {55, 76}, {52, 79}, {9, 117}, {43, 87}, {30, 98}, {32, 92}, {12, 113}, {19, 110}, {34, 95}, {14, 112}, {56, 70}, {47, 81}, {46, 80}, {41, 86}, {53, 74} }>;

(II) A more general form is to represent the graph as the orbit of {58, 62} under the group generated by the following permutations:

a: (1, 2, 11)(3, 7, 28)(4, 12, 8)(5, 29, 9)(6, 30, 10)(13, 25, 27)(14, 19, 22)(15, 23, 16)(17, 26, 24)(18, 20, 21)(31, 32, 41)(33, 37, 58)(34, 42, 38)(35, 59, 39)(36, 60, 40)(43, 55, 57)(44, 49, 52)(45, 53, 46)(47, 56, 54)(48, 50, 51)(61, 72, 97)(62, 71, 98)(63, 99, 73)(64, 100, 74)(65, 109, 79)(66, 110, 80)(67, 92, 116)(68, 91, 115)(69, 93, 82)(70, 94, 81)(75, 90, 88)(76, 89, 87)(77, 86, 117)(78, 85, 118)(83, 104, 106)(84, 103, 105)(95, 114, 119)(96, 113, 120)(101, 112, 107)(102, 111, 108)
b: (1, 3, 23, 13)(2, 20, 9, 4)(5, 18, 25, 22)(6, 15)(7, 21, 24, 29)(8, 19, 26, 30)(10, 28, 12, 14)(11, 16, 17, 27)(31, 33, 53, 43)(32, 50, 39, 34)(35, 48, 55, 52)(36, 45)(37, 51, 54, 59)(38, 49, 56, 60)(40, 58, 42, 44)(41, 46, 47, 57)(61, 64, 103, 65)(62, 63, 104, 66)(67, 71, 99, 109)(68, 72, 100, 110)(69, 79, 102, 90)(70, 80, 101, 89)(73, 81, 93, 86)(74, 82, 94, 85)(75, 84, 77, 113)(76, 83, 78, 114)(87, 117, 96, 91)(88, 118, 95, 92)(97, 119, 108, 112)(98, 120, 107, 111)(105, 106)(115, 116)
c: (2, 14)(3, 20)(4, 28)(5, 26)(6, 24)(7, 15)(8, 18)(9, 13)(11, 22)(12, 23)(17, 25)(27, 30)(32, 44)(33, 50)(34, 58)(35, 56)(36, 54)(37, 45)(38, 48)(39, 43)(41, 52)(42, 53)(47, 55)(57, 60)(61, 83)(62, 84)(63, 74)(64, 73)(65, 97)(66, 98)(67, 117)(68, 118)(69, 101)(70, 102)(71, 93)(72, 94)(75, 82)(76, 81)(77, 111)(78, 112)(79, 116)(80, 115)(85, 88)(86, 87)(89, 106)(90, 105)(91, 103)(92, 104)(95, 120)(96, 119)(99, 114)(100, 113)(107, 110)(108, 109)
d: (1, 31)(2, 32)(3, 33)(4, 34)(5, 35)(6, 36)(7, 37)(8, 38)(9, 39)(10, 40)(11, 41)(12, 42)(13, 43)(14, 44)(15, 45)(16, 46)(17, 47)(18, 48)(19, 49)(20, 50)(21, 51)(22, 52)(23, 53)(24, 54)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)(73, 74)(75, 76)(77, 78)(79, 80)(81, 82)(83, 84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96)(97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(117, 118)(119, 120)
e: (2, 11)(3, 7)(5, 6)(8, 12)(9, 30)(10, 29)(13, 27)(14, 22)(15, 20)(16, 21)(18, 23)(24, 26)(32, 41)(33, 37)(35, 36)(38, 42)(39, 60)(40, 59)(43, 57)(44, 52)(45, 50)(46, 51)(48, 53)(54, 56)(61, 77)(62, 78)(63, 119)(64, 120)(65, 87)(66, 88)(67, 94)(68, 93)(69, 91)(70, 92)(71, 118)(72, 117)(73, 95)(74, 96)(75, 80)(76, 79)(81, 116)(82, 115)(83, 111)(84, 112)(85, 98)(86, 97)(89, 109)(90, 110)(99, 114)(100, 113)(101, 103)(102, 104)(105, 107)(106, 108)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 120, 66 ]
120
-1 68 71 93 118
-2 78 91 82 98
-3 99 72 95 86
-4 111 83 74 96
-5 77 89 101 118
-6 103 71 61 109
-7 114 73 117 97
-8 100 102 106 120
-9 117 85 107 76
-10 62 84 97 65
-11 69 115 62 85
-12 113 104 64 108
-13 88 110 67 81
-14 66 112 103 75
-15 99 67 64 65
-16 79 116 63 74
-17 102 82 104 115
-18 89 113 70 95
-19 110 90 105 107
-20 114 94 87 120
-21 81 96 119 76
-22 88 101 80 84
-23 100 92 73 109
-24 91 93 83 108
-25 80 70 92 75
-26 111 68 69 106
-27 66 90 94 116
-28 77 61 63 119
-29 78 112 86 87
-30 79 72 105 98
-31 67 72 94 117
-32 77 81 92 97
-33 100 71 85 96
-34 112 73 84 95
-35 78 90 102 117
-36 110 104 72 62
-37 113 74 118 98
-38 99 101 105 119
-39 118 75 86 108
-40 66 61 83 98
-41 70 61 116 86
-42 103 114 63 107
-43 68 82 87 109
-44 111 104 65 76
-45 66 100 68 63
-46 80 115 73 64
-47 101 81 103 116
-48 90 69 114 96
-49 89 106 108 109
-50 88 113 93 119
-51 82 95 75 120
-52 79 102 83 87
-53 99 110 91 74
-54 92 94 84 107
-55 79 69 91 76
-56 67 112 70 105
-57 89 93 115 65
-58 78 62 64 120
-59 77 88 111 85
-60 80 71 106 97
-61 6 28 40 41
-62 11 36 58 10
-63 45 16 28 42
-64 12 46 58 15
-65 44 57 15 10
-66 45 14 27 40
-67 56 13 15 31
-68 1 45 26 43
-69 11 55 26 48
-70 56 25 18 41
-71 33 1 60 6
-72 3 36 30 31
-73 23 34 46 7
-74 4 37 16 53
-75 14 25 39 51
-76 44 55 9 21
-77 59 5 28 32
-78 2 35 58 29
-79 55 16 30 52
-80 22 46 25 60
-81 13 47 21 32
-82 2 17 51 43
-83 24 4 40 52
-84 22 34 10 54
-85 11 33 59 9
-86 3 39 29 41
-87 29 52 20 43
-88 22 13 59 50
-89 57 5 49 18
-90 35 48 27 19
-91 55 2 24 53
-92 23 25 32 54
-93 1 24 57 50
-94 27 20 31 54
-95 34 3 18 51
-96 33 4 48 21
-97 60 7 10 32
-98 2 37 40 30
-99 3 15 38 53
-100 33 23 45 8
-101 22 47 5 38
-102 35 17 8 52
-103 14 47 6 42
-104 44 12 36 17
-105 56 38 19 30
-106 26 49 60 8
-107 19 9 42 54
-108 12 24 49 39
-109 23 49 6 43
-110 13 36 19 53
-111 44 4 26 59
-112 34 56 14 29
-113 12 37 50 18
-114 48 7 20 42
-115 11 46 57 17
-116 47 16 27 41
-117 35 7 9 31
-118 1 37 5 39
-119 38 28 50 21
-120 58 51 8 20
0

**************