[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 121, 1 ]. See Glossary for some
detail.
{4, 4}_ 11, 0 = PS( 11, 11; 1) = MPS( 11, 22; 1)
= UG(ATD[121, 1]) = UG(Rmap(242, 3) { 4, 4| 11}_ 22) = MG(Rmap(121, 3) {
11, 22| 22}_ 22)
= DG(Rmap(121, 3) { 11, 22| 22}_ 22) = AT[121, 1]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | - | - | - | 0 | 0 |
| 2 | 0 | - | 1 | 0 | - | - | - | - | - | - | 1 |
| 3 | 0 | 10 | - | 0 | 10 | - | - | - | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 10 | - | - | - | - | - |
| 5 | - | - | 1 | 0 | - | 0 | 10 | - | - | - | - |
| 6 | - | - | - | 1 | 0 | - | 0 | 10 | - | - | - |
| 7 | - | - | - | - | 1 | 0 | - | 0 | 10 | - | - |
| 8 | - | - | - | - | - | 1 | 0 | - | 0 | 8 | - |
| 9 | - | - | - | - | - | - | 1 | 0 | - | 9 | 9 |
| 10 | 0 | - | - | - | - | - | - | 3 | 2 | - | 1 |
| 11 | 0 | 10 | - | - | - | - | - | - | 2 | 10 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 10 | 0 | - | - | - | - | - | - | - | - | 0 |
| 2 | 0 | 1 10 | 0 | - | - | - | - | - | - | - | - |
| 3 | - | 0 | 1 10 | 0 | - | - | - | - | - | - | - |
| 4 | - | - | 0 | 1 10 | 0 | - | - | - | - | - | - |
| 5 | - | - | - | 0 | 1 10 | 0 | - | - | - | - | - |
| 6 | - | - | - | - | 0 | 1 10 | 0 | - | - | - | - |
| 7 | - | - | - | - | - | 0 | 1 10 | 0 | - | - | - |
| 8 | - | - | - | - | - | - | 0 | 1 10 | 0 | - | - |
| 9 | - | - | - | - | - | - | - | 0 | 1 10 | 0 | - |
| 10 | - | - | - | - | - | - | - | - | 0 | 1 10 | 0 |
| 11 | 0 | - | - | - | - | - | - | - | - | 0 | 1 10 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | - | - | - | - | - | 0 10 |
| 2 | 0 10 | - | 0 1 | - | - | - | - | - | - | - | - |
| 3 | - | 0 10 | - | 0 1 | - | - | - | - | - | - | - |
| 4 | - | - | 0 10 | - | 0 1 | - | - | - | - | - | - |
| 5 | - | - | - | 0 10 | - | 0 1 | - | - | - | - | - |
| 6 | - | - | - | - | 0 10 | - | 0 1 | - | - | - | - |
| 7 | - | - | - | - | - | 0 10 | - | 0 1 | - | - | - |
| 8 | - | - | - | - | - | - | 0 10 | - | 0 1 | - | - |
| 9 | - | - | - | - | - | - | - | 0 10 | - | 0 1 | - |
| 10 | - | - | - | - | - | - | - | - | 0 10 | - | 0 1 |
| 11 | 0 1 | - | - | - | - | - | - | - | - | 0 10 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | 0 | - | - | - | - | 0 | - | 0 |
| 2 | 0 | - | 0 | - | 0 | - | - | - | - | 0 | - |
| 3 | - | 0 | - | 1 | - | 0 | - | - | - | - | 1 |
| 4 | 0 | - | 10 | - | 0 | - | 10 | - | - | - | - |
| 5 | - | 0 | - | 0 | - | 0 | - | 10 | - | - | - |
| 6 | - | - | 0 | - | 0 | - | 0 | - | 8 | - | - |
| 7 | - | - | - | 1 | - | 0 | - | 0 | - | 8 | - |
| 8 | - | - | - | - | 1 | - | 0 | - | 9 | - | 9 |
| 9 | 0 | - | - | - | - | 3 | - | 2 | - | 0 | - |
| 10 | - | 0 | - | - | - | - | 3 | - | 0 | - | 1 |
| 11 | 0 | - | 10 | - | - | - | - | 2 | - | 10 | - |