[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 122, 2 ] =
C_122(1,11).
(I) Following is a form readable by MAGMA:
g:=Graph<122|{ {2, 3}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112,
113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101},
{98, 99}, {96, 97}, {94, 95}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47},
{44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24,
25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {56, 57}, {58, 59}, {60, 61}, {62,
63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78,
79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {1,
2}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97,
98}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9,
10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {57, 58}, {61, 62}, {65,
66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {3,
4}, {115, 116}, {107, 108}, {99, 100}, {51, 52}, {43, 44}, {35, 36}, {11, 12},
{19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {4, 15},
{100, 111}, {96, 107}, {52, 63}, {48, 59}, {36, 47}, {16, 27}, {20, 31}, {32,
43}, {64, 75}, {68, 79}, {80, 91}, {84, 95}, {1, 12}, {99, 110}, {97, 108}, {51,
62}, {49, 60}, {35, 46}, {33, 44}, {3, 14}, {17, 28}, {19, 30}, {65, 76}, {67,
78}, {81, 92}, {83, 94}, {2, 13}, {119, 120}, {103, 104}, {98, 109}, {50, 61},
{39, 40}, {34, 45}, {7, 8}, {18, 29}, {23, 24}, {55, 56}, {66, 77}, {71, 72},
{82, 93}, {87, 88}, {5, 16}, {111, 122}, {109, 120}, {103, 114}, {101, 112},
{47, 58}, {45, 56}, {39, 50}, {37, 48}, {7, 18}, {13, 24}, {15, 26}, {69, 80},
{71, 82}, {77, 88}, {79, 90}, {6, 17}, {110, 121}, {102, 113}, {46, 57}, {38,
49}, {14, 25}, {70, 81}, {78, 89}, {8, 19}, {108, 119}, {104, 115}, {44, 55},
{40, 51}, {12, 23}, {72, 83}, {76, 87}, {9, 20}, {107, 118}, {105, 116}, {43,
54}, {41, 52}, {11, 22}, {73, 84}, {75, 86}, {10, 21}, {111, 112}, {106, 117},
{47, 48}, {42, 53}, {15, 16}, {74, 85}, {79, 80}, {21, 32}, {95, 106}, {23, 34},
{29, 40}, {31, 42}, {85, 96}, {87, 98}, {93, 104}, {22, 33}, {94, 105}, {30,
41}, {86, 97}, {24, 35}, {28, 39}, {88, 99}, {92, 103}, {25, 36}, {27, 38}, {89,
100}, {91, 102}, {26, 37}, {95, 96}, {31, 32}, {90, 101}, {1, 112}, {3, 114},
{5, 116}, {7, 118}, {9, 120}, {11, 122}, {2, 113}, {6, 117}, {10, 121}, {53,
64}, {55, 66}, {61, 72}, {63, 74}, {4, 115}, {54, 65}, {62, 73}, {1, 122}, {56,
67}, {60, 71}, {57, 68}, {59, 70}, {8, 119}, {58, 69}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 112, 122, 12)(3, 101, 121, 23)(4, 90, 120, 34)(5, 79, 119, 45)(6, 68,
118, 56)(7, 57, 117, 67)(8, 46, 116, 78)(9, 35, 115, 89)(10, 24, 114, 100)(11,
13, 113, 111)(14, 102, 110, 22)(15, 91, 109, 33)(16, 80, 108, 44)(17, 69, 107,
55)(18, 58, 106, 66)(19, 47, 105, 77)(20, 36, 104, 88)(21, 25, 103, 99)(26, 92,
98, 32)(27, 81, 97, 43)(28, 70, 96, 54)(29, 59, 95, 65)(30, 48, 94, 76)(31, 37,
93, 87)(38, 82, 86, 42)(39, 71, 85, 53)(40, 60, 84, 64)(41, 49, 83, 75)(50, 72,
74, 52)(51, 61, 73, 63) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122)
C4[ 122, 2 ]
122
-1 12 122 2 112
-2 1 13 3 113
-3 2 14 4 114
-4 3 15 5 115
-5 4 16 6 116
-6 5 17 7 117
-7 6 18 8 118
-8 7 19 9 119
-9 8 20 10 120
-10 11 121 9 21
-11 22 12 122 10
-12 11 1 23 13
-13 12 2 24 14
-14 13 3 25 15
-15 14 4 26 16
-16 15 5 27 17
-17 16 6 28 18
-18 17 7 29 19
-19 18 8 30 20
-20 19 9 31 21
-21 22 20 10 32
-22 11 33 23 21
-23 22 12 34 24
-24 23 13 35 25
-25 24 14 36 26
-26 25 15 37 27
-27 26 16 38 28
-28 27 17 39 29
-29 28 18 40 30
-30 29 19 41 31
-31 30 20 42 32
-32 33 31 21 43
-33 22 44 34 32
-34 33 23 45 35
-35 34 24 46 36
-36 35 25 47 37
-37 36 26 48 38
-38 37 27 49 39
-39 38 28 50 40
-40 39 29 51 41
-41 40 30 52 42
-42 41 31 53 43
-43 44 42 32 54
-44 33 55 45 43
-45 44 34 56 46
-46 45 35 57 47
-47 46 36 58 48
-48 47 37 59 49
-49 48 38 60 50
-50 49 39 61 51
-51 50 40 62 52
-52 51 41 63 53
-53 52 42 64 54
-54 55 53 43 65
-55 44 66 56 54
-56 55 45 67 57
-57 56 46 68 58
-58 57 47 69 59
-59 58 48 70 60
-60 59 49 71 61
-61 60 50 72 62
-62 61 51 73 63
-63 62 52 74 64
-64 63 53 75 65
-65 66 64 54 76
-66 55 77 67 65
-67 66 56 78 68
-68 67 57 79 69
-69 68 58 80 70
-70 69 59 81 71
-71 70 60 82 72
-72 71 61 83 73
-73 72 62 84 74
-74 73 63 85 75
-75 74 64 86 76
-76 77 75 65 87
-77 66 88 78 76
-78 77 67 89 79
-79 78 68 90 80
-80 79 69 91 81
-81 80 70 92 82
-82 81 71 93 83
-83 82 72 94 84
-84 83 73 95 85
-85 84 74 96 86
-86 85 75 97 87
-87 88 86 76 98
-88 77 99 89 87
-89 88 78 100 90
-90 89 79 101 91
-91 90 80 102 92
-92 91 81 103 93
-93 92 82 104 94
-94 93 83 105 95
-95 94 84 106 96
-96 95 85 107 97
-97 96 86 108 98
-98 99 97 87 109
-99 88 110 100 98
-100 99 89 111 101
-101 100 90 112 102
-102 101 91 113 103
-103 102 92 114 104
-104 103 93 115 105
-105 104 94 116 106
-106 105 95 117 107
-107 106 96 118 108
-108 107 97 119 109
-109 110 108 98 120
-110 99 121 111 109
-111 110 100 122 112
-112 1 111 101 113
-113 2 112 102 114
-114 3 113 103 115
-115 4 114 104 116
-116 5 115 105 117
-117 6 116 106 118
-118 7 117 107 119
-119 8 118 108 120
-120 121 9 119 109
-121 110 122 10 120
-122 11 121 1 111
0