[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 124, 2 ] =
R_62(33,32).
(I) Following is a form readable by MAGMA:
g:=Graph<124|{ {2, 3}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30,
31}, {28, 29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {42, 43}, {44, 45}, {46, 47},
{48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {1, 2},
{41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {25, 26}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {3, 4},
{35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {7, 8},
{39, 40}, {23, 24}, {55, 56}, {34, 63}, {64, 94}, {65, 95}, {15, 16}, {47, 48},
{64, 96}, {92, 124}, {91, 123}, {90, 122}, {89, 121}, {88, 120}, {87, 119}, {86,
118}, {85, 117}, {84, 116}, {83, 115}, {82, 114}, {81, 113}, {80, 112}, {79,
111}, {78, 110}, {77, 109}, {76, 108}, {75, 107}, {74, 106}, {73, 105}, {65,
97}, {66, 98}, {67, 99}, {68, 100}, {69, 101}, {70, 102}, {71, 103}, {72, 104},
{66, 96}, {94, 124}, {91, 121}, {90, 120}, {87, 117}, {86, 116}, {83, 113}, {82,
112}, {79, 109}, {78, 108}, {75, 105}, {74, 104}, {67, 97}, {70, 100}, {71,
101}, {68, 98}, {93, 123}, {92, 122}, {85, 115}, {84, 114}, {77, 107}, {76,
106}, {69, 99}, {72, 102}, {89, 119}, {88, 118}, {73, 103}, {1, 63}, {81, 111},
{80, 110}, {1, 62}, {31, 32}, {2, 64}, {39, 101}, {38, 100}, {35, 97}, {34, 96},
{31, 93}, {30, 92}, {27, 89}, {26, 88}, {3, 65}, {6, 68}, {7, 69}, {10, 72},
{11, 73}, {14, 76}, {15, 77}, {18, 80}, {19, 81}, {22, 84}, {23, 85}, {42, 104},
{43, 105}, {46, 108}, {47, 109}, {50, 112}, {51, 113}, {54, 116}, {55, 117},
{58, 120}, {59, 121}, {62, 124}, {4, 66}, {37, 99}, {36, 98}, {29, 91}, {28,
90}, {5, 67}, {12, 74}, {13, 75}, {20, 82}, {21, 83}, {44, 106}, {45, 107}, {52,
114}, {53, 115}, {60, 122}, {61, 123}, {8, 70}, {40, 102}, {9, 71}, {24, 86},
{25, 87}, {41, 103}, {56, 118}, {57, 119}, {4, 95}, {32, 123}, {1, 92}, {33,
124}, {3, 94}, {16, 78}, {17, 79}, {48, 110}, {49, 111}, {2, 93}, {63, 95}, {63,
93}, {35, 64}, {39, 68}, {43, 72}, {47, 76}, {51, 80}, {55, 84}, {59, 88}, {5,
96}, {38, 67}, {36, 65}, {31, 122}, {29, 120}, {7, 98}, {13, 104}, {15, 106},
{21, 112}, {23, 114}, {44, 73}, {46, 75}, {52, 81}, {54, 83}, {60, 89}, {62,
91}, {6, 97}, {37, 66}, {30, 121}, {14, 105}, {22, 113}, {45, 74}, {53, 82},
{61, 90}, {8, 99}, {28, 119}, {12, 103}, {24, 115}, {9, 100}, {40, 69}, {27,
118}, {11, 102}, {25, 116}, {42, 71}, {56, 85}, {58, 87}, {10, 101}, {41, 70},
{26, 117}, {57, 86}, {16, 107}, {20, 111}, {17, 108}, {19, 110}, {48, 77}, {50,
79}, {32, 94}, {33, 95}, {18, 109}, {49, 78} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (30, 91)(31, 123)(61, 122)(62, 92) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (12, 73)(13, 44)(14, 106)(43, 104)(45, 75)(74, 105)
c: (5, 66)(6, 98)(36, 97)(37, 67)
d: (7, 68)(8, 100)(38, 99)(39, 69)
e: (23, 84)(24, 116)(54, 115)(55, 85)
f: (20, 81)(21, 52)(22, 114)(51, 112)(53, 83)(82, 113)
g: (28, 89)(29, 60)(30, 122)(59, 120)(61, 91)(90, 121)
h: (4, 65)(5, 36)(6, 98)(35, 96)(37, 67)(66, 97)
m: (13, 74)(14, 106)(44, 105)(45, 75)
n1: (26, 87)(27, 58)(28, 120)(57, 118)(59, 89)(88, 119)
a1: (11, 72)(12, 104)(42, 103)(43, 73)
b1: (14, 75)(15, 46)(16, 108)(45, 106)(47, 77)(76, 107)
c1: (27, 88)(28, 120)(58, 119)(59, 89)
d1: (8, 69)(9, 40)(10, 102)(39, 100)(41, 71)(70, 101)
e1: (16, 77)(17, 48)(18, 110)(47, 108)(49, 79)(78, 109)
f1: (2, 92, 63, 62)(3, 30, 95, 91)(4, 29)(5, 28)(6, 27)(7, 26)(8, 25)(9, 24)(10,
23)(11, 22)(12, 21)(13, 20)(14, 19)(15, 18)(16, 17)(31, 33, 123, 94)(34, 61, 64,
122)(35, 60)(36, 59)(37, 58)(38, 57)(39, 56)(40, 55)(41, 54)(42, 53)(43, 52)(44,
51)(45, 50)(46, 49)(47, 48)(65, 121)(66, 120)(67, 119)(68, 118)(69, 117)(70,
116)(71, 115)(72, 114)(73, 113)(74, 112)(75, 111)(76, 110)(77, 109)(78, 108)(79,
107)(80, 106)(81, 105)(82, 104)(83, 103)(84, 102)(85, 101)(86, 100)(87, 99)(88,
98)(89, 97)(90, 96)(93, 124)
g1: (17, 78)(18, 110)(48, 109)(49, 79)
h1: (25, 86)(26, 118)(56, 117)(57, 87)
m1: (22, 83)(23, 54)(24, 116)(53, 114)(55, 85)(84, 115)
n2: (15, 76)(16, 108)(46, 107)(47, 77)
a2: (29, 90)(30, 122)(60, 121)(61, 91)
b2: (18, 79)(19, 50)(20, 112)(49, 110)(51, 81)(80, 111)
c2: (9, 70)(10, 102)(40, 101)(41, 71)
d2: (10, 71)(11, 42)(12, 104)(41, 102)(43, 73)(72, 103)
e2: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62)(63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124)
f2: (21, 82)(22, 114)(52, 113)(53, 83)
g2: (6, 67)(7, 38)(8, 100)(37, 98)(39, 69)(68, 99)
h2: (24, 85)(25, 56)(26, 118)(55, 116)(57, 87)(86, 117)
m2: (19, 80)(20, 112)(50, 111)(51, 81)
C4[ 124, 2 ]
124
-1 2 92 62 63
-2 1 3 93 64
-3 2 4 94 65
-4 66 3 5 95
-5 67 4 6 96
-6 68 5 7 97
-7 69 6 8 98
-8 99 70 7 9
-9 100 71 8 10
-10 11 101 72 9
-11 12 102 73 10
-12 11 13 103 74
-13 12 14 104 75
-14 13 15 105 76
-15 77 14 16 106
-16 78 15 17 107
-17 79 16 18 108
-18 80 17 19 109
-19 110 81 18 20
-20 111 82 19 21
-21 22 112 83 20
-22 23 113 84 21
-23 22 24 114 85
-24 23 25 115 86
-25 24 26 116 87
-26 88 25 27 117
-27 89 26 28 118
-28 90 27 29 119
-29 91 28 30 120
-30 121 92 29 31
-31 122 93 30 32
-32 33 123 94 31
-33 34 124 95 32
-34 33 35 63 96
-35 34 36 64 97
-36 35 37 65 98
-37 66 99 36 38
-38 67 100 37 39
-39 68 101 38 40
-40 69 102 39 41
-41 70 103 40 42
-42 71 104 41 43
-43 44 72 105 42
-44 45 73 106 43
-45 44 46 74 107
-46 45 47 75 108
-47 46 48 76 109
-48 77 110 47 49
-49 78 111 48 50
-50 79 112 49 51
-51 80 113 50 52
-52 81 114 51 53
-53 82 115 52 54
-54 55 83 116 53
-55 56 84 117 54
-56 55 57 85 118
-57 56 58 86 119
-58 57 59 87 120
-59 88 121 58 60
-60 89 122 59 61
-61 90 123 60 62
-62 1 91 124 61
-63 1 34 93 95
-64 2 35 94 96
-65 3 36 95 97
-66 4 37 96 98
-67 99 5 38 97
-68 100 6 39 98
-69 99 101 7 40
-70 100 102 8 41
-71 101 103 9 42
-72 102 104 10 43
-73 11 44 103 105
-74 12 45 104 106
-75 13 46 105 107
-76 14 47 106 108
-77 15 48 107 109
-78 110 16 49 108
-79 111 17 50 109
-80 110 112 18 51
-81 111 113 19 52
-82 112 114 20 53
-83 113 115 21 54
-84 22 55 114 116
-85 23 56 115 117
-86 24 57 116 118
-87 25 58 117 119
-88 26 59 118 120
-89 121 27 60 119
-90 122 28 61 120
-91 121 123 29 62
-92 1 122 124 30
-93 2 123 63 31
-94 3 124 64 32
-95 33 4 63 65
-96 66 34 5 64
-97 67 35 6 65
-98 66 68 36 7
-99 67 69 37 8
-100 68 70 38 9
-101 69 71 39 10
-102 11 70 72 40
-103 12 71 73 41
-104 13 72 74 42
-105 14 73 75 43
-106 44 15 74 76
-107 77 45 16 75
-108 78 46 17 76
-109 77 79 47 18
-110 78 80 48 19
-111 79 81 49 20
-112 80 82 50 21
-113 22 81 83 51
-114 23 82 84 52
-115 24 83 85 53
-116 25 84 86 54
-117 55 26 85 87
-118 88 56 27 86
-119 89 57 28 87
-120 88 90 58 29
-121 89 91 59 30
-122 90 92 60 31
-123 91 93 61 32
-124 33 92 94 62
0