[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 128, 2 ]. See Glossary for some
detail.
{4, 4}_ 8, 8 = PS( 16, 16; 1) = PS( 16, 16; 7)
= MC3( 8, 16, 1, 7, 7, 8, 1) = UG(ATD[128, 15]) = UG(ATD[128, 16])
= UG(ATD[128, 17]) = UG(Rmap(256, 3) { 4, 4| 16}_ 16) = MG(Rmap(128, 3) {
4, 4| 8}_ 16)
= DG(Rmap(128, 3) { 4, 4| 8}_ 16) = DG(Rmap(128, 12) { 4, 16| 8}_ 4) =
MG(Rmap(128,117) { 16, 16| 8}_ 16)
= DG(Rmap(128,117) { 16, 16| 8}_ 16) = MG(Rmap(128,121) { 16, 16| 2}_ 16) =
DG(Rmap(128,121) { 16, 16| 2}_ 16)
= MG(Rmap(128,127) { 16, 16| 8}_ 16) = DG(Rmap(128,127) { 16, 16| 8}_ 16) =
PL({4, 4}_ 8, 0[ 8^ 16])
= BGCG({4, 4}_ 8, 0; K1;{8, 9}) = AT[128, 15]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | 1 |
3 | 0 | 15 | - | 0 | 15 | - | - | - |
4 | - | 0 | 0 | - | 0 | 15 | - | - |
5 | - | - | 1 | 0 | - | 0 | 5 | - |
6 | - | - | - | 1 | 0 | - | 6 | 6 |
7 | 0 | - | - | - | 11 | 10 | - | 1 |
8 | 0 | 15 | - | - | - | 10 | 15 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 15 | 0 2 | - | - | - | - | - | - |
2 | 0 14 | - | 0 2 | - | - | - | - | - |
3 | - | 0 14 | - | 0 2 | - | - | - | - |
4 | - | - | 0 14 | - | 0 2 | - | - | - |
5 | - | - | - | 0 14 | - | 0 2 | - | - |
6 | - | - | - | - | 0 14 | - | 0 2 | - |
7 | - | - | - | - | - | 0 14 | - | 0 2 |
8 | - | - | - | - | - | - | 0 14 | 1 15 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 10 | - | - | 0 |
2 | 0 | - | 0 | - | - | 0 10 | - | - |
3 | - | 0 | - | 0 | - | - | 0 10 | - |
4 | - | - | 0 | - | 1 | - | - | 1 7 |
5 | 0 6 | - | - | 15 | - | 0 | - | - |
6 | - | 0 6 | - | - | 0 | - | 0 | - |
7 | - | - | 0 6 | - | - | 0 | - | 7 |
8 | 0 | - | - | 9 15 | - | - | 9 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 15 | - | - | - | - | - | 0 |
2 | 0 1 15 | - | 0 | - | - | - | - | - |
3 | - | 0 | - | 0 | - | - | - | 1 15 |
4 | - | - | 0 | - | 0 | - | 0 2 | - |
5 | - | - | - | 0 | - | 0 7 9 | - | - |
6 | - | - | - | - | 0 7 9 | - | 9 | - |
7 | - | - | - | 0 14 | - | 7 | - | 15 |
8 | 0 | - | 1 15 | - | - | - | 1 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 15 | 0 | - | - | - | - | - | 0 |
2 | 0 | 1 15 | 0 | - | - | - | - | - |
3 | - | 0 | 1 15 | 0 | - | - | - | - |
4 | - | - | 0 | 1 15 | 0 | - | - | - |
5 | - | - | - | 0 | 1 15 | 0 | - | - |
6 | - | - | - | - | 0 | 1 15 | 0 | - |
7 | - | - | - | - | - | 0 | 1 15 | 8 |
8 | 0 | - | - | - | - | - | 8 | 1 15 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 15 | 0 | - | - | - | - | - | 0 |
2 | 0 | - | 0 | - | - | - | - | 1 15 |
3 | - | 0 | - | 0 | - | - | 0 2 | - |
4 | - | - | 0 | - | 0 | 0 2 | - | - |
5 | - | - | - | 0 | 7 9 | 9 | - | - |
6 | - | - | - | 0 14 | 7 | - | 0 | - |
7 | - | - | 0 14 | - | - | 0 | - | 15 |
8 | 0 | 1 15 | - | - | - | - | 1 | - |