C4graphConstructions for C4[ 128, 2 ] = {4,4}_8,8

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 128, 2 ]. See Glossary for some detail.

{4, 4}_ 8, 8 = PS( 16, 16; 1) = PS( 16, 16; 7)

      = MC3( 8, 16, 1, 7, 7, 8, 1) = UG(ATD[128, 15]) = UG(ATD[128, 16])

      = UG(ATD[128, 17]) = UG(Rmap(256, 3) { 4, 4| 16}_ 16) = MG(Rmap(128, 3) { 4, 4| 8}_ 16)

      = DG(Rmap(128, 3) { 4, 4| 8}_ 16) = DG(Rmap(128, 12) { 4, 16| 8}_ 4) = MG(Rmap(128,117) { 16, 16| 8}_ 16)

      = DG(Rmap(128,117) { 16, 16| 8}_ 16) = MG(Rmap(128,121) { 16, 16| 2}_ 16) = DG(Rmap(128,121) { 16, 16| 2}_ 16)

      = MG(Rmap(128,127) { 16, 16| 8}_ 16) = DG(Rmap(128,127) { 16, 16| 8}_ 16) = PL({4, 4}_ 8, 0[ 8^ 16])

      = BGCG({4, 4}_ 8, 0; K1;{8, 9}) = AT[128, 15]

Cyclic coverings

mod 16:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 15 - 0 15 - - -
4 - 0 0 - 0 15 - -
5 - - 1 0 - 0 5 -
6 - - - 1 0 - 6 6
7 0 - - - 11 10 - 1
8 0 15 - - - 10 15 -

mod 16:
12345678
1 1 15 0 2 - - - - - -
2 0 14 - 0 2 - - - - -
3 - 0 14 - 0 2 - - - -
4 - - 0 14 - 0 2 - - -
5 - - - 0 14 - 0 2 - -
6 - - - - 0 14 - 0 2 -
7 - - - - - 0 14 - 0 2
8 - - - - - - 0 14 1 15

mod 16:
12345678
1 - 0 - - 0 10 - - 0
2 0 - 0 - - 0 10 - -
3 - 0 - 0 - - 0 10 -
4 - - 0 - 1 - - 1 7
5 0 6 - - 15 - 0 - -
6 - 0 6 - - 0 - 0 -
7 - - 0 6 - - 0 - 7
8 0 - - 9 15 - - 9 -

mod 16:
12345678
1 - 0 1 15 - - - - - 0
2 0 1 15 - 0 - - - - -
3 - 0 - 0 - - - 1 15
4 - - 0 - 0 - 0 2 -
5 - - - 0 - 0 7 9 - -
6 - - - - 0 7 9 - 9 -
7 - - - 0 14 - 7 - 15
8 0 - 1 15 - - - 1 -

mod 16:
12345678
1 1 15 0 - - - - - 0
2 0 1 15 0 - - - - -
3 - 0 1 15 0 - - - -
4 - - 0 1 15 0 - - -
5 - - - 0 1 15 0 - -
6 - - - - 0 1 15 0 -
7 - - - - - 0 1 15 8
8 0 - - - - - 8 1 15

mod 16:
12345678
1 1 15 0 - - - - - 0
2 0 - 0 - - - - 1 15
3 - 0 - 0 - - 0 2 -
4 - - 0 - 0 0 2 - -
5 - - - 0 7 9 9 - -
6 - - - 0 14 7 - 0 -
7 - - 0 14 - - 0 - 15
8 0 1 15 - - - - 1 -