[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 128, 3 ] =
{4,4}_<12,4>.
(I) Following is a form readable by MAGMA:
g:=Graph<128|{ {2, 3}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118,
119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107},
{104, 105}, {102, 103}, {100, 101}, {98, 99}, {94, 95}, {92, 93}, {90, 91}, {88,
89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {40, 41}, {38, 39}, {36, 37}, {34,
35}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {42, 43}, {44, 45},
{46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61},
{62, 63}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79},
{1, 2}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106},
{101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {37, 38}, {33,
34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73,
74}, {77, 78}, {3, 4}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92},
{83, 84}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60},
{67, 68}, {75, 76}, {7, 8}, {119, 120}, {103, 104}, {87, 88}, {39, 40}, {23,
24}, {55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {1, 33}, {95,
127}, {94, 126}, {93, 125}, {92, 124}, {91, 123}, {90, 122}, {89, 121}, {88,
120}, {87, 119}, {86, 118}, {85, 117}, {84, 116}, {83, 115}, {82, 114}, {81,
113}, {80, 112}, {31, 63}, {30, 62}, {29, 61}, {28, 60}, {27, 59}, {26, 58},
{25, 57}, {24, 56}, {23, 55}, {2, 34}, {3, 35}, {4, 36}, {5, 37}, {6, 38}, {7,
39}, {8, 40}, {9, 41}, {10, 42}, {11, 43}, {12, 44}, {13, 45}, {14, 46}, {15,
47}, {16, 48}, {17, 49}, {18, 50}, {19, 51}, {20, 52}, {21, 53}, {22, 54}, {64,
96}, {65, 97}, {66, 98}, {67, 99}, {68, 100}, {69, 101}, {70, 102}, {71, 103},
{72, 104}, {73, 105}, {74, 106}, {75, 107}, {76, 108}, {77, 109}, {78, 110},
{79, 111}, {1, 32}, {65, 96}, {31, 32}, {95, 96}, {32, 116}, {32, 64}, {40, 72},
{39, 71}, {38, 70}, {37, 69}, {36, 68}, {35, 67}, {34, 66}, {33, 65}, {41, 73},
{42, 74}, {43, 75}, {44, 76}, {45, 77}, {46, 78}, {47, 79}, {48, 80}, {49, 81},
{50, 82}, {51, 83}, {52, 84}, {53, 85}, {54, 86}, {55, 87}, {56, 88}, {57, 89},
{58, 90}, {59, 91}, {60, 92}, {61, 93}, {62, 94}, {63, 95}, {33, 64}, {13, 97},
{31, 115}, {30, 114}, {29, 113}, {28, 112}, {14, 98}, {15, 99}, {1, 117}, {27,
111}, {26, 110}, {25, 109}, {24, 108}, {2, 118}, {3, 119}, {8, 124}, {9, 125},
{10, 126}, {11, 127}, {16, 100}, {17, 101}, {18, 102}, {19, 103}, {4, 120}, {23,
107}, {22, 106}, {5, 121}, {6, 122}, {7, 123}, {20, 104}, {21, 105}, {63, 64},
{12, 128}, {96, 128}, {97, 128}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 33)(3, 65)(4, 97)(5, 13)(6, 45)(7, 77)(8, 109)(9, 25)(10, 57)(11, 89)(12,
121)(14, 37)(15, 69)(16, 101)(18, 49)(19, 81)(20, 113)(21, 29)(22, 61)(23,
93)(24, 125)(26, 41)(27, 73)(28, 105)(30, 53)(31, 85)(32, 117)(35, 66)(36,
98)(38, 46)(39, 78)(40, 110)(42, 58)(43, 90)(44, 122)(47, 70)(48, 102)(51,
82)(52, 114)(54, 62)(55, 94)(56, 126)(59, 74)(60, 106)(63, 86)(64, 118)(68,
99)(71, 79)(72, 111)(75, 91)(76, 123)(80, 103)(84, 115)(87, 95)(88, 127)(92,
107)(96, 119)(104, 112)(108, 124)(120, 128) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)(33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64)(65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128)
c: (2, 32)(3, 31)(4, 30)(5, 29)(6, 28)(7, 27)(8, 26)(9, 25)(10, 24)(11, 23)(12,
22)(13, 21)(14, 20)(15, 19)(16, 18)(33, 117)(34, 116)(35, 115)(36, 114)(37,
113)(38, 112)(39, 111)(40, 110)(41, 109)(42, 108)(43, 107)(44, 106)(45, 105)(46,
104)(47, 103)(48, 102)(49, 101)(50, 100)(51, 99)(52, 98)(53, 97)(54, 128)(55,
127)(56, 126)(57, 125)(58, 124)(59, 123)(60, 122)(61, 121)(62, 120)(63, 119)(64,
118)(65, 85)(66, 84)(67, 83)(68, 82)(69, 81)(70, 80)(71, 79)(72, 78)(73, 77)(74,
76)(86, 96)(87, 95)(88, 94)(89, 93)(90, 92)
C4[ 128, 3 ]
128
-1 33 2 117 32
-2 1 34 3 118
-3 2 35 4 119
-4 3 36 5 120
-5 121 4 37 6
-6 122 5 38 7
-7 123 6 39 8
-8 124 7 40 9
-9 125 8 41 10
-10 11 126 9 42
-11 12 127 10 43
-12 11 44 13 128
-13 12 45 14 97
-14 13 46 15 98
-15 99 14 47 16
-16 100 15 48 17
-17 101 16 49 18
-18 102 17 50 19
-19 103 18 51 20
-20 104 19 52 21
-21 22 105 20 53
-22 23 106 21 54
-23 22 55 24 107
-24 23 56 25 108
-25 24 57 26 109
-26 110 25 58 27
-27 111 26 59 28
-28 112 27 60 29
-29 113 28 61 30
-30 114 29 62 31
-31 115 30 63 32
-32 1 116 31 64
-33 1 34 64 65
-34 33 66 2 35
-35 34 67 3 36
-36 35 68 4 37
-37 36 69 5 38
-38 37 70 6 39
-39 38 71 7 40
-40 39 72 8 41
-41 40 73 9 42
-42 41 74 10 43
-43 11 44 42 75
-44 12 45 43 76
-45 44 77 13 46
-46 45 78 14 47
-47 46 79 15 48
-48 47 80 16 49
-49 48 81 17 50
-50 49 82 18 51
-51 50 83 19 52
-52 51 84 20 53
-53 52 85 21 54
-54 22 55 53 86
-55 23 56 54 87
-56 55 88 24 57
-57 56 89 25 58
-58 57 90 26 59
-59 58 91 27 60
-60 59 92 28 61
-61 60 93 29 62
-62 61 94 30 63
-63 62 95 31 64
-64 33 63 96 32
-65 33 66 96 97
-66 34 67 65 98
-67 66 99 35 68
-68 67 100 36 69
-69 68 101 37 70
-70 69 102 38 71
-71 70 103 39 72
-72 71 104 40 73
-73 72 105 41 74
-74 73 106 42 75
-75 74 107 43 76
-76 44 77 75 108
-77 45 78 76 109
-78 77 110 46 79
-79 78 111 47 80
-80 79 112 48 81
-81 80 113 49 82
-82 81 114 50 83
-83 82 115 51 84
-84 83 116 52 85
-85 84 117 53 86
-86 85 118 54 87
-87 55 88 86 119
-88 56 89 87 120
-89 88 121 57 90
-90 89 122 58 91
-91 90 123 59 92
-92 91 124 60 93
-93 92 125 61 94
-94 93 126 62 95
-95 94 127 63 96
-96 95 128 64 65
-97 13 128 65 98
-98 66 99 14 97
-99 67 100 15 98
-100 99 68 101 16
-101 100 69 102 17
-102 101 70 103 18
-103 102 71 104 19
-104 103 72 105 20
-105 104 73 106 21
-106 22 105 74 107
-107 23 106 75 108
-108 24 107 76 109
-109 77 110 25 108
-110 78 111 26 109
-111 110 79 112 27
-112 111 80 113 28
-113 112 81 114 29
-114 113 82 115 30
-115 114 83 116 31
-116 115 84 117 32
-117 1 116 85 118
-118 2 117 86 119
-119 3 118 87 120
-120 88 121 4 119
-121 89 122 5 120
-122 121 90 123 6
-123 122 91 124 7
-124 123 92 125 8
-125 124 93 126 9
-126 125 94 127 10
-127 11 126 95 128
-128 12 127 96 97
0