[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 128, 17 ]. See Glossary for some
detail.
MSY( 8, 16, 9, 8) = MSZ ( 16, 8, 3, 3) = MSZ ( 16, 8, 5, 3)
= MC3( 8, 16, 1, 7, 9, 8, 1) = UG(ATD[128, 39]) = UG(ATD[128, 40])
= UG(ATD[128, 41]) = UG(Rmap(256, 17) { 8, 4| 16}_ 16) = MG(Rmap(128, 55) {
8, 8| 8}_ 16)
= DG(Rmap(128, 55) { 8, 8| 8}_ 16) = DG(Rmap(128, 57) { 8, 16| 8}_ 8) =
MG(Rmap(128,120) { 16, 16| 8}_ 16)
= DG(Rmap(128,120) { 16, 16| 8}_ 16) = MG(Rmap(128,125) { 16, 16| 8}_ 16) =
DG(Rmap(128,125) { 16, 16| 8}_ 16)
= MG(Rmap(128,126) { 16, 16| 4}_ 16) = DG(Rmap(128,126) { 16, 16| 4}_ 16) =
BGCG({4, 4}_ 8, 0; K1;{3, 6})
= AT[128, 14]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 15 | 0 | - | - | - | 0 | - | - |
2 | 0 | - | 13 15 | - | - | - | 15 | - |
3 | - | 1 3 | - | 0 | 0 | - | - | - |
4 | - | - | 0 | - | 9 11 | - | - | 0 |
5 | - | - | 0 | 5 7 | - | - | - | 12 |
6 | 0 | - | - | - | - | - | 11 | 9 11 |
7 | - | 1 | - | - | - | 5 | 1 15 | - |
8 | - | - | - | 0 | 4 | 5 7 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 14 | - | - | - | - | 0 |
2 | 0 | 1 15 | 7 | - | - | - | - | - |
3 | 0 2 | 9 | - | 9 | - | - | - | - |
4 | - | - | 7 | - | 0 | - | - | 1 15 |
5 | - | - | - | 0 | - | 0 | 0 2 | - |
6 | - | - | - | - | 0 | 7 9 | 1 | - |
7 | - | - | - | - | 0 14 | 15 | - | 7 |
8 | 0 | - | - | 1 15 | - | - | 9 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 10 | 0 | - | - | - | - | - |
2 | 0 6 15 | - | - | 0 | - | - | - | - |
3 | 0 | - | - | 2 8 | 8 | - | - | - |
4 | - | 0 | 8 14 | - | - | 0 | - | - |
5 | - | - | 8 | - | - | 2 8 | 8 | - |
6 | - | - | - | 0 | 8 14 | - | - | 0 |
7 | - | - | - | - | 8 | - | - | 2 8 9 |
8 | - | - | - | - | - | 0 | 7 8 14 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | 9 |
3 | 0 | 15 | - | 8 | 15 | - | - | - |
4 | - | 0 | 8 | - | 8 | 7 | - | - |
5 | - | - | 1 | 8 | - | 8 | 5 | - |
6 | - | - | - | 9 | 8 | - | 14 | 6 |
7 | 0 | - | - | - | 11 | 2 | - | 1 |
8 | 0 | 7 | - | - | - | 10 | 15 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 10 | 0 | - | - | - | - | 0 |
2 | 0 6 | - | - | 0 | - | - | 0 | - |
3 | 0 | - | - | 2 8 | 8 | - | - | - |
4 | - | 0 | 8 14 | - | - | 0 | - | - |
5 | - | - | 8 | - | - | 2 8 | 1 | - |
6 | - | - | - | 0 | 8 14 | - | - | 15 |
7 | - | 0 | - | - | 15 | - | - | 8 14 |
8 | 0 | - | - | - | - | 1 | 2 8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 15 | 0 | - | - | - | - | - | 0 |
2 | 0 | 7 9 | 8 | - | - | - | - | - |
3 | - | 8 | 1 15 | 8 | - | - | - | - |
4 | - | - | 8 | 7 9 | 8 | - | - | - |
5 | - | - | - | 8 | 1 15 | 8 | - | - |
6 | - | - | - | - | 8 | 7 9 | 8 | - |
7 | - | - | - | - | - | 8 | 1 15 | 0 |
8 | 0 | - | - | - | - | - | 0 | 7 9 |