C4graphConstructions for C4[ 128, 17 ] = MSY(8,16,9,8)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 128, 17 ]. See Glossary for some detail.

MSY( 8, 16, 9, 8) = MSZ ( 16, 8, 3, 3) = MSZ ( 16, 8, 5, 3)

      = MC3( 8, 16, 1, 7, 9, 8, 1) = UG(ATD[128, 39]) = UG(ATD[128, 40])

      = UG(ATD[128, 41]) = UG(Rmap(256, 17) { 8, 4| 16}_ 16) = MG(Rmap(128, 55) { 8, 8| 8}_ 16)

      = DG(Rmap(128, 55) { 8, 8| 8}_ 16) = DG(Rmap(128, 57) { 8, 16| 8}_ 8) = MG(Rmap(128,120) { 16, 16| 8}_ 16)

      = DG(Rmap(128,120) { 16, 16| 8}_ 16) = MG(Rmap(128,125) { 16, 16| 8}_ 16) = DG(Rmap(128,125) { 16, 16| 8}_ 16)

      = MG(Rmap(128,126) { 16, 16| 4}_ 16) = DG(Rmap(128,126) { 16, 16| 4}_ 16) = BGCG({4, 4}_ 8, 0; K1;{3, 6})

      = AT[128, 14]

Cyclic coverings

mod 16:
12345678
1 1 15 0 - - - 0 - -
2 0 - 13 15 - - - 15 -
3 - 1 3 - 0 0 - - -
4 - - 0 - 9 11 - - 0
5 - - 0 5 7 - - - 12
6 0 - - - - - 11 9 11
7 - 1 - - - 5 1 15 -
8 - - - 0 4 5 7 - -

mod 16:
12345678
1 - 0 0 14 - - - - 0
2 0 1 15 7 - - - - -
3 0 2 9 - 9 - - - -
4 - - 7 - 0 - - 1 15
5 - - - 0 - 0 0 2 -
6 - - - - 0 7 9 1 -
7 - - - - 0 14 15 - 7
8 0 - - 1 15 - - 9 -

mod 16:
12345678
1 - 0 1 10 0 - - - - -
2 0 6 15 - - 0 - - - -
3 0 - - 2 8 8 - - -
4 - 0 8 14 - - 0 - -
5 - - 8 - - 2 8 8 -
6 - - - 0 8 14 - - 0
7 - - - - 8 - - 2 8 9
8 - - - - - 0 7 8 14 -

mod 16:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 9
3 0 15 - 8 15 - - -
4 - 0 8 - 8 7 - -
5 - - 1 8 - 8 5 -
6 - - - 9 8 - 14 6
7 0 - - - 11 2 - 1
8 0 7 - - - 10 15 -

mod 16:
12345678
1 - 0 10 0 - - - - 0
2 0 6 - - 0 - - 0 -
3 0 - - 2 8 8 - - -
4 - 0 8 14 - - 0 - -
5 - - 8 - - 2 8 1 -
6 - - - 0 8 14 - - 15
7 - 0 - - 15 - - 8 14
8 0 - - - - 1 2 8 -

mod 16:
12345678
1 1 15 0 - - - - - 0
2 0 7 9 8 - - - - -
3 - 8 1 15 8 - - - -
4 - - 8 7 9 8 - - -
5 - - - 8 1 15 8 - -
6 - - - - 8 7 9 8 -
7 - - - - - 8 1 15 0
8 0 - - - - - 0 7 9