[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 128, 24 ] =
PL(Curtain_16(1,8,6,9,14),[4^16,8^8]).
(I) Following is a form readable by MAGMA:
g:=Graph<128|{ {64, 81}, {64, 89}, {64, 106}, {64, 114}, {1, 65}, {3, 67}, {16,
80}, {52, 116}, {28, 93}, {33, 96}, {46, 111}, {48, 113}, {12, 78}, {63, 125},
{20, 86}, {24, 90}, {41, 107}, {54, 116}, {10, 73}, {14, 77}, {18, 81}, {59,
120}, {5, 65}, {63, 123}, {12, 73}, {61, 120}, {13, 72}, {41, 108}, {47, 106},
{8, 78}, {14, 72}, {19, 85}, {27, 93}, {4, 67}, {37, 98}, {36, 99}, {10, 77},
{21, 82}, {2, 74}, {39, 111}, {5, 77}, {9, 65}, {21, 93}, {60, 116}, {3, 74},
{38, 111}, {4, 77}, {25, 80}, {46, 103}, {47, 102}, {2, 72}, {62, 116}, {55,
125}, {1, 74}, {35, 104}, {28, 87}, {8, 67}, {23, 92}, {44, 103}, {51, 120}, {6,
74}, {32, 108}, {29, 80}, {39, 106}, {36, 105}, {48, 125}, {53, 120}, {54, 123},
{60, 113}, {19, 93}, {31, 81}, {52, 122}, {57, 119}, {6, 73}, {61, 114}, {38,
105}, {24, 87}, {44, 99}, {15, 95}, {31, 79}, {17, 65}, {22, 70}, {23, 71}, {25,
73}, {49, 97}, {11, 90}, {13, 92}, {53, 100}, {26, 72}, {40, 122}, {33, 115},
{43, 121}, {44, 126}, {56, 106}, {16, 67}, {62, 109}, {37, 118}, {42, 121}, {49,
98}, {50, 102}, {7, 82}, {40, 125}, {35, 118}, {9, 92}, {15, 88}, {7, 95}, {34,
122}, {15, 87}, {22, 78}, {57, 97}, {11, 82}, {30, 71}, {27, 66}, {45, 119},
{55, 109}, {29, 70}, {34, 121}, {42, 113}, {45, 118}, {50, 105}, {32, 124}, {51,
111}, {56, 100}, {58, 102}, {2, 95}, {43, 118}, {58, 103}, {59, 102}, {1, 95},
{7, 88}, {12, 108}, {36, 68}, {30, 126}, {13, 109}, {14, 110}, {3, 98}, {39,
70}, {4, 101}, {46, 79}, {50, 83}, {56, 89}, {57, 88}, {49, 83}, {55, 85}, {40,
75}, {53, 86}, {6, 98}, {63, 91}, {29, 121}, {7, 99}, {8, 108}, {26, 126}, {47,
75}, {11, 110}, {14, 107}, {16, 117}, {26, 127}, {3, 101}, {35, 69}, {6, 96},
{19, 117}, {61, 91}, {23, 112}, {62, 89}, {11, 99}, {24, 112}, {44, 68}, {2,
107}, {58, 83}, {10, 96}, {17, 123}, {47, 69}, {57, 83}, {5, 110}, {62, 85},
{20, 127}, {25, 114}, {41, 66}, {49, 90}, {8, 100}, {39, 75}, {31, 115}, {25,
117}, {55, 91}, {61, 81}, {18, 127}, {35, 78}, {28, 113}, {17, 127}, {33, 79},
{30, 112}, {27, 117}, {43, 69}, {53, 91}, {56, 86}, {17, 126}, {40, 71}, {19,
124}, {21, 122}, {54, 89}, {27, 107}, {34, 82}, {60, 76}, {37, 84}, {9, 123},
{38, 84}, {4, 119}, {52, 71}, {16, 100}, {28, 104}, {20, 96}, {42, 94}, {48,
68}, {54, 66}, {32, 85}, {45, 88}, {51, 70}, {58, 79}, {24, 110}, {18, 101},
{33, 86}, {22, 97}, {26, 109}, {41, 94}, {59, 76}, {36, 92}, {52, 76}, {60, 68},
{5, 124}, {30, 103}, {45, 84}, {9, 115}, {31, 101}, {46, 84}, {43, 80}, {48,
75}, {29, 97}, {34, 94}, {1, 124}, {63, 66}, {10, 119}, {21, 104}, {42, 87},
{12, 114}, {32, 94}, {13, 115}, {22, 104}, {23, 105}, {59, 69}, {15, 112}, {37,
90}, {51, 76}, {18, 128}, {20, 128}, {38, 128}, {50, 128} }>;
(II) A more general form is to represent the graph as the orbit of {64, 81}
under the group generated by the following permutations:
a: (3, 6)(4, 10)(8, 12)(16, 25)(18, 20)(31, 33)(53, 61)(56, 64)(67, 73)(81,
86)(96, 101)(100, 114) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (9, 17)(13, 26)(18, 31)(20, 33)(23, 30)(36, 44)(38, 46)(50, 58)(79, 128)(92,
126)(103, 105)(115, 127)
c: (1, 3, 2, 6)(4, 14, 10, 5)(7, 37)(8, 26, 25, 9)(11, 45)(12, 17, 16, 13)(15,
49)(18, 27, 33, 32)(19, 31, 41, 20)(21, 46, 34, 38)(22, 30, 29, 23)(24, 57)(28,
58, 42, 50)(35, 44, 43, 36)(39, 40)(47, 48)(51, 52)(53, 62, 61, 54)(55, 64, 63,
56)(59, 60)(65, 67, 72, 73)(66, 86, 85, 81)(68, 69)(70, 71)(78, 126, 80, 92)(79,
94, 128, 93)(82, 84)(83, 87)(88, 90)(89, 91)(95, 98)(96, 124, 101, 107)(97,
112)(99, 118)(100, 109, 114, 123)(102, 113)(103, 121, 105, 104)(106, 125)(108,
127, 117, 115)(110, 119)(111, 122)(116, 120)
d: (7, 15)(8, 31, 16, 18)(9, 19, 17, 32)(11, 24)(12, 33, 25, 20)(13, 27, 26,
41)(21, 30, 34, 23)(22, 46, 29, 38)(28, 44, 42, 36)(35, 58, 43, 50)(37, 49)(45,
57)(53, 61)(54, 62)(55, 63)(56, 64)(65, 124)(66, 109)(67, 101)(68, 113)(69,
102)(70, 111)(71, 122)(72, 107)(73, 96)(78, 79, 80, 128)(81, 100)(82, 112)(83,
118)(84, 97)(85, 123)(86, 114)(87, 99)(92, 93, 126, 94)(103, 121, 105, 104)(108,
115, 117, 127)
e: (8, 16)(12, 25)(19, 32)(21, 34)(22, 29)(27, 41)(28, 42)(35, 43)(78, 80)(93,
94)(104, 121)(108, 117)
f: (7, 15)(8, 31, 16, 18)(9, 19, 17, 32)(11, 24)(12, 33, 25, 20)(13, 27, 26,
41)(21, 30, 34, 23)(22, 58, 29, 50)(28, 44, 42, 36)(35, 46, 43, 38)(39, 47)(51,
59)(53, 61)(54, 62)(55, 63)(56, 64)(65, 124)(66, 109)(67, 101)(68, 113)(69,
111)(70, 102)(71, 122)(72, 107)(73, 96)(78, 79, 80, 128)(81, 100)(82, 112)(83,
97)(84, 118)(85, 123)(86, 114)(87, 99)(92, 93, 126, 94)(103, 121, 105, 104)(108,
115, 117, 127)
g: (7, 15)(11, 24)(21, 28)(23, 36)(30, 44)(34, 42)(40, 48)(52, 60)(68, 71)(82,
87)(99, 112)(113, 122)
h: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19, 15, 32)(8, 36, 16, 23)(10, 26)(11, 27, 24,
41)(12, 44, 25, 30)(18, 33)(21, 28, 42, 34)(22, 48, 29, 40)(35, 60, 43, 52)(37,
54)(38, 56)(45, 62)(46, 64)(47, 51)(49, 63)(50, 53)(55, 57)(58, 61)(65, 74)(66,
90)(67, 92)(68, 80, 71, 78)(69, 76)(70, 75)(72, 77)(73, 126)(79, 81)(82, 93, 87,
94)(83, 91)(84, 89)(85, 88)(86, 128)(95, 124)(96, 127)(97, 125)(98, 123)(99,
117, 112, 108)(100, 105)(101, 115)(102, 120)(103, 114)(104, 113, 121, 122)(106,
111)(107, 110)(109, 119)(116, 118)
m: (3, 7, 6, 15)(4, 11, 10, 24)(8, 21, 12, 28)(9, 17)(13, 26)(16, 34, 25,
42)(18, 36, 20, 23)(19, 32)(27, 41)(30, 31, 44, 33)(37, 45)(40, 64, 48, 56)(49,
57)(52, 61, 60, 53)(54, 63)(55, 62)(67, 82, 73, 87)(68, 86, 71, 81)(74, 95)(75,
106)(76, 120)(77, 110)(78, 104)(79, 103)(80, 121)(88, 98)(89, 125)(90, 119)(91,
116)(92, 127)(93, 108)(94, 117)(96, 112, 101, 99)(100, 122, 114, 113)(105,
128)(115, 126)
n1: (1, 2)(5, 14)(9, 13)(17, 26)(19, 27)(32, 41)(54, 62)(55, 63)(65, 72)(66,
85)(107, 124)(109, 123)
a1: (39, 51)(40, 52)(47, 59)(48, 60)(53, 56)(54, 63)(55, 62)(61, 64)(75, 76)(89,
91)(106, 120)(116, 125)
C4[ 128, 24 ]
128
-1 124 95 74 65
-2 72 95 74 107
-3 67 101 74 98
-4 77 67 101 119
-5 77 110 124 65
-6 73 74 96 98
-7 88 99 82 95
-8 67 78 100 108
-9 123 92 115 65
-10 77 73 96 119
-11 99 110 90 82
-12 78 114 73 108
-13 92 115 72 109
-14 77 110 72 107
-15 88 112 95 87
-16 67 100 80 117
-17 123 126 127 65
-18 101 81 127 128
-19 124 93 117 85
-20 127 128 96 86
-21 122 82 93 104
-22 78 70 104 97
-23 112 92 71 105
-24 110 90 112 87
-25 80 114 73 117
-26 126 72 127 109
-27 66 93 117 107
-28 113 93 104 87
-29 121 80 70 97
-30 112 103 71 126
-31 79 101 81 115
-32 124 94 85 108
-33 79 115 96 86
-34 121 122 82 94
-35 78 69 104 118
-36 99 68 92 105
-37 90 84 118 98
-38 111 105 84 128
-39 111 70 106 75
-40 122 125 71 75
-41 66 94 107 108
-42 121 113 94 87
-43 121 69 80 118
-44 99 68 103 126
-45 88 84 118 119
-46 111 79 103 84
-47 69 102 106 75
-48 68 113 125 75
-49 90 83 97 98
-50 102 83 105 128
-51 111 70 76 120
-52 122 71 116 76
-53 100 91 86 120
-54 66 89 123 116
-55 91 125 85 109
-56 89 100 106 86
-57 88 83 97 119
-58 79 102 103 83
-59 69 102 76 120
-60 68 113 116 76
-61 91 81 114 120
-62 89 116 85 109
-63 66 123 91 125
-64 89 81 114 106
-65 1 5 17 9
-66 27 41 63 54
-67 3 4 16 8
-68 44 36 48 60
-69 35 47 59 43
-70 22 39 29 51
-71 23 40 30 52
-72 2 13 14 26
-73 12 25 6 10
-74 1 2 3 6
-75 47 48 39 40
-76 59 60 51 52
-77 14 4 5 10
-78 22 12 35 8
-79 33 46 58 31
-80 25 16 29 43
-81 61 18 31 64
-82 11 34 7 21
-83 57 58 49 50
-84 45 46 37 38
-85 55 62 19 32
-86 33 56 20 53
-87 24 15 28 42
-88 45 57 15 7
-89 56 62 64 54
-90 11 24 37 49
-91 55 61 63 53
-92 23 13 36 9
-93 27 28 19 21
-94 34 41 42 32
-95 1 2 15 7
-96 33 6 20 10
-97 22 57 49 29
-98 3 37 49 6
-99 11 44 36 7
-100 56 16 8 53
-101 3 4 18 31
-102 47 58 59 50
-103 44 46 58 30
-104 22 35 28 21
-105 23 36 38 50
-106 56 47 39 64
-107 2 14 27 41
-108 12 8 41 32
-109 55 13 26 62
-110 11 24 14 5
-111 46 38 39 51
-112 23 24 15 30
-113 48 60 28 42
-114 12 25 61 64
-115 33 13 9 31
-116 60 62 52 54
-117 25 16 27 19
-118 45 35 37 43
-119 45 57 4 10
-120 59 61 51 53
-121 34 29 42 43
-122 34 40 52 21
-123 17 63 9 54
-124 1 5 19 32
-125 55 48 40 63
-126 44 26 17 30
-127 26 17 18 20
-128 38 50 18 20
0