C4graphConstructions for C4[ 128, 25 ] = CPM(8,2,4,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 128, 25 ]. See Glossary for some detail.

CPM( 8, 2, 4, 1) = CPM( 8, 2, 4, 3) = AMC( 8, 8, [ 1. 7: 0. 7])

      = UG(ATD[128, 36]) = UG(ATD[128, 37]) = UG(ATD[128, 38])

      = ATD[ 8, 1]#ATD[ 16, 1] = ATD[ 16, 1]#DCyc[ 8] = ATD[ 16, 1]#ATD[ 16, 1]

      = UG(Rmap(256, 18) { 8, 4| 8}_ 16) = MG(Rmap(128, 41) { 8, 8| 8}_ 8) = DG(Rmap(128, 41) { 8, 8| 8}_ 8)

      = MG(Rmap(128, 42) { 8, 8| 8}_ 8) = DG(Rmap(128, 42) { 8, 8| 8}_ 8) = MG(Rmap(128, 47) { 8, 8| 8}_ 8)

      = DG(Rmap(128, 47) { 8, 8| 8}_ 8) = MG(Rmap(128, 67) { 8, 16| 8}_ 16) = DG(Rmap(128, 67) { 8, 16| 8}_ 16)

      = DG(Rmap(128, 79) { 16, 8| 8}_ 16) = AT[128, 12]

Cyclic coverings

mod 16:
12345678
1 - - 0 0 2 - - 0 -
2 - - 1 - - 0 2 5 -
3 0 15 1 15 - - - - -
4 0 14 - - - 12 - - 12
5 - - - 4 7 9 15 - -
6 - 0 14 - - 1 - - 13
7 0 11 - - - - 1 15 -
8 - - - 4 - 3 - 7 9

mod 16:
12345678
1 - - - 0 - 0 10 0 -
2 - - 0 10 - - 1 - 0
3 - 0 6 - - - 10 - 13
4 0 - - - 12 - 1 11 -
5 - - - 4 - - 0 3 13
6 0 6 15 6 - - - - -
7 0 - - 5 15 0 - - -
8 - 0 3 - 3 13 - - -