C4graphGraph forms for C4 [ 128, 33 ] = UG(ATD[128,44])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 128, 33 ] = UG(ATD[128,44]).

(I) Following is a form readable by MAGMA:

g:=Graph<128|{ {32, 33}, {104, 106}, {1, 2}, {1, 5}, {3, 7}, {2, 6}, {16, 21}, {107, 110}, {43, 46}, {41, 44}, {48, 53}, {73, 76}, {8, 14}, {113, 119}, {18, 20}, {112, 120}, {4, 13}, {102, 111}, {6, 15}, {3, 9}, {114, 120}, {5, 14}, {112, 123}, {6, 13}, {4, 8}, {118, 122}, {117, 121}, {101, 105}, {98, 110}, {84, 88}, {19, 31}, {33, 44}, {115, 126}, {113, 124}, {39, 42}, {2, 12}, {85, 91}, {33, 46}, {115, 124}, {114, 125}, {36, 43}, {103, 119}, {15, 30}, {44, 61}, {40, 57}, {41, 59}, {65, 83}, {69, 87}, {12, 31}, {108, 127}, {77, 94}, {45, 62}, {40, 60}, {42, 62}, {8, 29}, {106, 127}, {99, 118}, {34, 55}, {11, 30}, {10, 31}, {32, 54}, {109, 123}, {7, 16}, {9, 17}, {102, 126}, {101, 125}, {100, 124}, {96, 120}, {11, 19}, {10, 18}, {35, 58}, {111, 118}, {98, 123}, {96, 121}, {79, 86}, {69, 92}, {7, 28}, {100, 127}, {97, 122}, {36, 63}, {35, 56}, {70, 93}, {34, 62}, {105, 117}, {6, 27}, {97, 124}, {9, 20}, {71, 90}, {5, 26}, {10, 21}, {4, 36}, {81, 113}, {80, 112}, {79, 111}, {78, 110}, {77, 109}, {76, 108}, {75, 107}, {66, 98}, {67, 99}, {68, 100}, {72, 104}, {73, 105}, {74, 106}, {23, 54}, {94, 127}, {29, 60}, {27, 58}, {25, 56}, {68, 101}, {70, 103}, {16, 50}, {91, 121}, {88, 122}, {86, 116}, {31, 61}, {24, 58}, {17, 51}, {12, 47}, {26, 57}, {21, 49}, {81, 117}, {71, 99}, {18, 52}, {85, 115}, {84, 114}, {80, 118}, {25, 63}, {19, 53}, {66, 100}, {25, 62}, {95, 120}, {28, 59}, {92, 117}, {22, 58}, {14, 35}, {14, 32}, {90, 116}, {89, 119}, {15, 33}, {24, 55}, {87, 103}, {88, 104}, {20, 37}, {94, 111}, {89, 104}, {25, 40}, {24, 41}, {22, 39}, {16, 34}, {73, 123}, {10, 57}, {78, 125}, {21, 38}, {93, 105}, {17, 36}, {91, 110}, {83, 102}, {3, 53}, {72, 126}, {82, 101}, {90, 109}, {79, 119}, {71, 125}, {75, 113}, {74, 112}, {69, 126}, {87, 108}, {13, 48}, {22, 43}, {15, 49}, {20, 42}, {19, 45}, {3, 60}, {23, 40}, {4, 59}, {1, 65}, {7, 70}, {1, 67}, {22, 82}, {24, 92}, {9, 76}, {54, 115}, {55, 114}, {13, 75}, {39, 96}, {5, 77}, {17, 89}, {8, 66}, {38, 108}, {51, 121}, {11, 64}, {27, 80}, {52, 103}, {2, 86}, {29, 72}, {47, 122}, {23, 64}, {30, 73}, {11, 83}, {18, 74}, {28, 71}, {27, 70}, {48, 109}, {61, 96}, {56, 102}, {63, 97}, {26, 69}, {51, 83}, {50, 86}, {37, 64}, {38, 65}, {56, 95}, {37, 77}, {43, 67}, {42, 66}, {41, 65}, {39, 79}, {38, 78}, {44, 68}, {48, 88}, {49, 89}, {29, 116}, {34, 75}, {51, 90}, {53, 92}, {55, 94}, {32, 74}, {54, 93}, {57, 84}, {12, 98}, {49, 95}, {59, 85}, {60, 82}, {35, 76}, {52, 91}, {26, 107}, {63, 78}, {50, 64}, {23, 99}, {37, 81}, {61, 72}, {28, 106}, {50, 68}, {52, 67}, {45, 85}, {47, 87}, {46, 84}, {45, 80}, {47, 82}, {30, 97}, {46, 81}, {93, 128}, {95, 128}, {107, 128}, {116, 128} }>;

(II) A more general form is to represent the graph as the orbit of {32, 33} under the group generated by the following permutations:

a: (1, 2)(3, 9)(4, 8)(5, 6)(7, 20)(10, 21)(11, 87)(12, 65)(13, 14)(15, 26)(16, 18)(17, 60)(19, 108)(22, 90)(23, 119)(24, 123)(25, 104)(27, 77)(28, 42)(29, 36)(30, 69)(31, 38)(32, 75)(33, 107)(34, 74)(35, 48)(37, 70)(39, 71)(40, 89)(41, 98)(43, 116)(44, 110)(45, 127)(46, 128)(47, 83)(49, 57)(50, 52)(51, 82)(53, 76)(54, 113)(55, 112)(56, 88)(58, 109)(59, 66)(61, 78)(62, 106)(63, 72)(64, 103)(67, 86)(68, 91)(73, 92)(79, 99)(80, 94)(81, 93)(84, 95)(85, 100)(96, 125)(97, 126)(101, 121)(102, 122)(105, 117)(111, 118)(114, 120)(115, 124)
b: (3, 62)(7, 45)(9, 25)(10, 64)(11, 21)(12, 86)(16, 19)(17, 63)(18, 23)(20, 40)(26, 77)(28, 85)(29, 66)(30, 49)(31, 50)(34, 53)(37, 57)(38, 83)(39, 82)(42, 60)(47, 79)(48, 75)(51, 78)(52, 99)(54, 74)(55, 92)(56, 76)(61, 68)(69, 94)(70, 80)(71, 91)(72, 100)(73, 95)(81, 84)(87, 111)(88, 113)(89, 97)(90, 110)(93, 112)(96, 101)(98, 116)(102, 108)(103, 118)(104, 124)(105, 120)(106, 115)(107, 109)(114, 117)(119, 122)(121, 125)(123, 128)(126, 127)
c: (3, 104)(7, 89)(9, 106)(10, 87)(11, 118)(15, 27)(16, 119)(17, 28)(18, 108)(19, 122)(20, 127)(21, 103)(22, 44)(23, 102)(24, 46)(25, 115)(30, 80)(31, 47)(32, 35)(33, 58)(34, 113)(36, 59)(37, 94)(38, 52)(39, 68)(40, 126)(41, 43)(42, 100)(45, 97)(49, 70)(50, 79)(51, 71)(53, 88)(54, 56)(55, 81)(57, 69)(60, 72)(61, 82)(62, 124)(63, 85)(64, 111)(65, 67)(73, 112)(74, 76)(78, 91)(83, 99)(84, 92)(93, 95)(96, 101)(105, 120)(114, 117)(121, 125)
d: (2, 5)(6, 14)(7, 9)(8, 13)(11, 23)(12, 26)(15, 32)(16, 20)(17, 28)(18, 21)(19, 40)(22, 24)(25, 45)(27, 35)(29, 48)(30, 54)(31, 57)(34, 42)(36, 59)(37, 50)(38, 52)(39, 55)(41, 43)(44, 46)(47, 69)(49, 74)(51, 71)(53, 60)(56, 80)(61, 84)(63, 85)(65, 67)(66, 75)(68, 81)(70, 76)(72, 88)(73, 93)(77, 86)(78, 91)(79, 94)(82, 92)(83, 99)(89, 106)(95, 112)(96, 114)(97, 115)(98, 107)(100, 113)(101, 117)(102, 118)(103, 108)(109, 116)(119, 127)(121, 125)(122, 126)(123, 128)
e: (4, 64, 87)(5, 65, 67)(6, 86, 12)(7, 60, 53)(8, 11, 103)(10, 58, 90)(13, 50, 47)(14, 83, 52)(15, 79, 98)(16, 82, 48)(17, 20, 76)(18, 35, 51)(19, 70, 29)(21, 22, 109)(23, 69, 59)(24, 71, 57)(25, 117, 106)(26, 41, 99)(27, 116, 31)(28, 40, 92)(30, 119, 66)(32, 102, 91)(33, 111, 110)(34, 101, 88)(36, 37, 108)(38, 43, 77)(39, 123, 49)(42, 73, 89)(44, 118, 107)(45, 93, 72)(46, 94, 78)(54, 126, 85)(55, 125, 84)(56, 121, 74)(61, 80, 128)(62, 105, 104)(63, 81, 127)(68, 122, 75)(95, 96, 112)(97, 113, 100)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 128, 33 ]
128
-1 67 2 5 65
-2 1 12 6 86
-3 60 7 9 53
-4 13 36 59 8
-5 77 1 14 26
-6 2 13 15 27
-7 3 70 16 28
-8 66 14 4 29
-9 3 17 20 76
-10 57 18 31 21
-11 83 19 30 64
-12 2 47 31 98
-13 4 48 6 75
-14 35 5 8 32
-15 33 49 6 30
-16 34 50 7 21
-17 89 36 51 9
-18 52 74 20 10
-19 11 45 31 53
-20 37 18 9 42
-21 16 38 49 10
-22 58 82 39 43
-23 99 40 64 54
-24 55 58 92 41
-25 56 40 62 63
-26 57 69 5 107
-27 58 80 70 6
-28 59 71 7 106
-29 60 72 116 8
-30 11 15 73 97
-31 12 61 19 10
-32 33 14 74 54
-33 44 46 15 32
-34 55 16 62 75
-35 56 14 58 76
-36 4 17 63 43
-37 77 81 20 64
-38 78 108 21 65
-39 22 79 96 42
-40 23 57 25 60
-41 44 24 59 65
-42 66 39 62 20
-43 22 67 46 36
-44 33 68 61 41
-45 80 62 19 85
-46 33 81 84 43
-47 12 122 82 87
-48 88 13 53 109
-49 89 15 95 21
-50 68 16 64 86
-51 121 90 17 83
-52 67 91 103 18
-53 3 48 92 19
-54 23 93 115 32
-55 34 24 114 94
-56 35 25 102 95
-57 26 40 84 10
-58 22 24 35 27
-59 4 28 41 85
-60 3 82 29 40
-61 44 72 96 31
-62 34 45 25 42
-63 78 25 36 97
-64 11 23 37 50
-65 1 38 83 41
-66 100 8 42 98
-67 99 1 52 43
-68 44 100 101 50
-69 26 92 126 87
-70 103 27 93 7
-71 99 90 125 28
-72 104 126 61 29
-73 123 105 30 76
-74 112 18 106 32
-75 34 13 113 107
-76 35 73 9 108
-77 37 5 94 109
-78 110 125 38 63
-79 111 39 86 119
-80 45 112 27 118
-81 46 113 37 117
-82 22 101 47 60
-83 11 102 51 65
-84 88 46 57 114
-85 45 91 59 115
-86 2 79 50 116
-87 47 69 103 108
-88 122 48 104 84
-89 49 104 17 119
-90 71 116 51 109
-91 110 121 52 85
-92 24 69 117 53
-93 70 105 128 54
-94 55 77 111 127
-95 56 49 128 120
-96 121 39 61 120
-97 122 124 30 63
-98 66 110 12 123
-99 23 67 71 118
-100 66 68 124 127
-101 68 125 82 105
-102 56 111 126 83
-103 70 52 119 87
-104 88 89 72 106
-105 101 93 73 117
-106 104 28 127 74
-107 110 26 128 75
-108 38 127 76 87
-109 77 90 123 48
-110 78 91 107 98
-111 79 102 94 118
-112 123 80 74 120
-113 124 81 75 119
-114 55 125 84 120
-115 124 126 85 54
-116 90 29 128 86
-117 121 81 92 105
-118 99 111 122 80
-119 89 79 113 103
-120 112 114 95 96
-121 91 51 117 96
-122 88 47 118 97
-123 112 73 98 109
-124 100 113 115 97
-125 78 101 114 71
-126 69 102 115 72
-127 100 94 106 108
-128 93 116 95 107
0

**************