C4graphGraph forms for C4 [ 128, 47 ] = SDD({4,4}_<6,2>)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 128, 47 ] = SDD({4,4}_<6,2>).

(I) Following is a form readable by MAGMA:

g:=Graph<128|{ {64, 95}, {64, 96}, {64, 127}, {1, 65}, {63, 127}, {62, 126}, {61, 125}, {60, 124}, {48, 112}, {49, 113}, {51, 115}, {52, 116}, {53, 117}, {54, 118}, {55, 119}, {56, 120}, {57, 121}, {58, 122}, {59, 123}, {22, 87}, {63, 126}, {61, 124}, {25, 88}, {46, 111}, {51, 114}, {53, 116}, {55, 118}, {57, 120}, {59, 122}, {3, 65}, {45, 111}, {1, 66}, {62, 125}, {2, 65}, {44, 111}, {49, 114}, {50, 113}, {54, 117}, {58, 121}, {6, 66}, {18, 86}, {21, 81}, {42, 110}, {4, 65}, {40, 109}, {31, 90}, {7, 66}, {28, 89}, {43, 110}, {5, 67}, {41, 111}, {5, 66}, {60, 123}, {41, 110}, {52, 115}, {12, 68}, {38, 110}, {36, 108}, {14, 70}, {27, 83}, {10, 67}, {37, 108}, {34, 107}, {13, 68}, {9, 67}, {39, 109}, {33, 107}, {30, 84}, {15, 69}, {24, 82}, {8, 67}, {38, 109}, {32, 107}, {14, 69}, {8, 68}, {32, 108}, {11, 69}, {35, 109}, {11, 68}, {35, 108}, {16, 95}, {56, 119}, {24, 72}, {39, 119}, {26, 74}, {48, 96}, {22, 71}, {25, 72}, {46, 127}, {2, 80}, {36, 118}, {3, 81}, {21, 71}, {27, 73}, {42, 120}, {50, 96}, {13, 94}, {20, 71}, {26, 73}, {6, 82}, {33, 117}, {30, 74}, {18, 70}, {45, 121}, {16, 69}, {31, 74}, {19, 70}, {28, 73}, {40, 125}, {43, 126}, {47, 122}, {17, 71}, {29, 75}, {10, 93}, {17, 70}, {29, 74}, {12, 84}, {34, 123}, {37, 124}, {9, 83}, {15, 85}, {7, 92}, {20, 72}, {44, 112}, {23, 73}, {4, 91}, {23, 72}, {47, 112}, {1, 97}, {63, 95}, {62, 94}, {61, 93}, {48, 80}, {49, 81}, {51, 83}, {52, 84}, {53, 85}, {54, 86}, {55, 87}, {56, 88}, {57, 89}, {58, 90}, {59, 91}, {60, 92}, {22, 119}, {63, 94}, {61, 92}, {25, 120}, {46, 79}, {51, 82}, {53, 84}, {55, 86}, {57, 88}, {59, 90}, {3, 97}, {45, 79}, {1, 98}, {62, 93}, {2, 97}, {44, 79}, {49, 82}, {50, 81}, {54, 85}, {58, 89}, {6, 98}, {18, 118}, {21, 113}, {42, 78}, {4, 97}, {40, 77}, {31, 122}, {7, 98}, {28, 121}, {43, 78}, {5, 99}, {41, 79}, {5, 98}, {41, 78}, {52, 83}, {60, 91}, {12, 100}, {38, 78}, {36, 76}, {14, 102}, {27, 115}, {10, 99}, {37, 76}, {34, 75}, {13, 100}, {9, 99}, {39, 77}, {33, 75}, {30, 116}, {15, 101}, {24, 114}, {8, 99}, {38, 77}, {32, 75}, {14, 101}, {8, 100}, {32, 76}, {11, 101}, {35, 77}, {11, 100}, {35, 76}, {16, 127}, {56, 87}, {24, 104}, {39, 87}, {26, 106}, {22, 103}, {25, 104}, {46, 95}, {2, 112}, {36, 86}, {3, 113}, {21, 103}, {27, 105}, {42, 88}, {13, 126}, {19, 96}, {20, 103}, {26, 105}, {6, 114}, {33, 85}, {30, 106}, {18, 102}, {45, 89}, {16, 101}, {40, 93}, {31, 106}, {19, 102}, {28, 105}, {43, 94}, {47, 90}, {17, 103}, {29, 107}, {10, 125}, {29, 106}, {17, 102}, {12, 116}, {34, 91}, {37, 92}, {9, 115}, {15, 117}, {7, 124}, {20, 104}, {44, 80}, {23, 105}, {4, 123}, {23, 104}, {47, 80}, {19, 128}, {48, 128}, {50, 128}, {64, 128} }>;

(II) A more general form is to represent the graph as the orbit of {64, 95} under the group generated by the following permutations:

a: (95, 127)
b: (82, 114)
c: (2, 5)(3, 7)(4, 6)(8, 44)(9, 47)(10, 48)(11, 41)(12, 45)(13, 46)(14, 38)(15, 42)(16, 43)(17, 35)(18, 39)(19, 40)(20, 32)(21, 37)(22, 36)(23, 29)(24, 34)(25, 33)(27, 31)(28, 30)(49, 60)(50, 61)(51, 59)(52, 58)(53, 57)(54, 56)(62, 64)(65, 66)(67, 80)(68, 79)(69, 78)(70, 77)(71, 76)(72, 75)(73, 74)(81, 92)(82, 91)(83, 90)(84, 89)(85, 88)(86, 87)(93, 96)(94, 95)(97, 98)(99, 112)(100, 111)(101, 110)(102, 109)(103, 108)(104, 107)(105, 106)(113, 124)(114, 123)(115, 122)(116, 121)(117, 120)(118, 119)(125, 128)(126, 127)
d: (93, 125)
e: (69, 101)
f: (92, 124)
g: (84, 116)
h: (67, 99)
m: (91, 123)
n1: (76, 108)
a1: (65, 97)
b1: (79, 111)
c1: (96, 128)
d1: (81, 113)
e1: (73, 105)
f1: (1, 3)(2, 4)(5, 21)(6, 49)(7, 50)(8, 22)(9, 20)(10, 17)(11, 39)(12, 56)(13, 55)(14, 40)(15, 38)(16, 35)(18, 62)(19, 61)(23, 27)(24, 51)(25, 52)(26, 28)(29, 45)(30, 57)(31, 58)(32, 46)(33, 41)(34, 44)(36, 63)(37, 64)(42, 53)(43, 54)(47, 59)(48, 60)(66, 81)(67, 71)(68, 87)(69, 77)(70, 93)(72, 83)(74, 89)(75, 79)(76, 95)(78, 85)(80, 91)(84, 88)(86, 94)(92, 96)(98, 113)(99, 103)(100, 119)(101, 109)(102, 125)(104, 115)(106, 121)(107, 111)(108, 127)(110, 117)(112, 123)(116, 120)(118, 126)(124, 128)
g1: (75, 107)
h1: (1, 2, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 48, 46, 43, 40, 37, 34, 31, 28, 25, 22, 18, 15, 12, 9, 6)(4, 47, 45, 42, 39, 36, 33, 30, 27, 24, 21, 19, 16, 13, 10, 7)(49, 50, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51)(65, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66)(81, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82)(97, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98)(113, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114)
m1: (71, 103)
n2: (80, 112)
a2: (78, 110)
b2: (74, 106)
c2: (94, 126)
d2: (86, 118)
e2: (88, 120)
f2: (89, 121)
g2: (70, 102)
h2: (87, 119)
m2: (68, 100)
n3: (66, 98)
a3: (83, 115)
b3: (77, 109)
c3: (90, 122)
d3: (72, 104)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 128, 47 ]
128
-1 66 97 65 98
-2 112 80 97 65
-3 113 81 97 65
-4 123 91 97 65
-5 66 99 67 98
-6 66 114 82 98
-7 66 124 92 98
-8 99 67 100 68
-9 99 67 115 83
-10 99 67 125 93
-11 100 68 101 69
-12 100 68 116 84
-13 100 68 126 94
-14 101 69 102 70
-15 101 69 117 85
-16 101 69 127 95
-17 102 70 103 71
-18 102 70 118 86
-19 102 70 128 96
-20 103 71 104 72
-21 113 81 103 71
-22 103 71 119 87
-23 104 72 105 73
-24 114 82 104 72
-25 88 104 72 120
-26 105 73 106 74
-27 115 83 105 73
-28 121 89 105 73
-29 106 74 107 75
-30 116 84 106 74
-31 122 90 106 74
-32 107 75 108 76
-33 117 85 107 75
-34 123 91 107 75
-35 77 108 76 109
-36 118 86 108 76
-37 124 92 108 76
-38 77 110 78 109
-39 77 119 87 109
-40 77 125 93 109
-41 110 78 111 79
-42 88 110 78 120
-43 110 78 126 94
-44 111 79 112 80
-45 121 89 111 79
-46 111 79 127 95
-47 122 90 112 80
-48 112 80 128 96
-49 113 81 114 82
-50 113 81 128 96
-51 114 82 115 83
-52 115 83 116 84
-53 116 84 117 85
-54 117 85 118 86
-55 118 86 119 87
-56 88 119 87 120
-57 88 121 89 120
-58 121 89 122 90
-59 122 90 123 91
-60 123 91 124 92
-61 124 92 125 93
-62 125 93 126 94
-63 126 94 127 95
-64 127 95 128 96
-65 1 2 3 4
-66 1 5 6 7
-67 5 8 9 10
-68 11 12 13 8
-69 11 14 15 16
-70 14 17 18 19
-71 22 17 20 21
-72 23 24 25 20
-73 23 26 27 28
-74 26 29 30 31
-75 33 34 29 32
-76 35 36 37 32
-77 35 38 39 40
-78 38 41 42 43
-79 44 45 46 41
-80 44 2 47 48
-81 3 49 50 21
-82 24 49 6 51
-83 27 51 52 9
-84 12 30 52 53
-85 33 15 53 54
-86 55 36 18 54
-87 22 55 56 39
-88 56 57 25 42
-89 45 57 58 28
-90 47 58 59 31
-91 34 4 59 60
-92 37 60 61 7
-93 61 40 62 10
-94 13 62 63 43
-95 46 16 63 64
-96 48 50 19 64
-97 1 2 3 4
-98 1 5 6 7
-99 5 8 9 10
-100 11 12 13 8
-101 11 14 15 16
-102 14 17 18 19
-103 22 17 20 21
-104 23 24 25 20
-105 23 26 27 28
-106 26 29 30 31
-107 33 34 29 32
-108 35 36 37 32
-109 35 38 39 40
-110 38 41 42 43
-111 44 45 46 41
-112 44 2 47 48
-113 3 49 50 21
-114 24 49 6 51
-115 27 51 52 9
-116 12 30 52 53
-117 33 15 53 54
-118 55 36 18 54
-119 22 55 56 39
-120 56 57 25 42
-121 45 57 58 28
-122 47 58 59 31
-123 34 4 59 60
-124 37 60 61 7
-125 61 40 62 10
-126 13 62 63 43
-127 46 16 63 64
-128 48 50 19 64
0

**************