C4graphGraph forms for C4 [ 130, 1 ] = W(65,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 130, 1 ] = W(65,2).

(I) Following is a form readable by MAGMA:

g:=Graph<130|{ {2, 3}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {1, 2}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {3, 4}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {7, 8}, {119, 120}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {15, 16}, {111, 112}, {79, 80}, {47, 48}, {31, 32}, {95, 96}, {1, 65}, {37, 101}, {36, 100}, {35, 99}, {34, 98}, {33, 97}, {32, 96}, {31, 95}, {30, 94}, {29, 93}, {28, 92}, {27, 91}, {26, 90}, {25, 89}, {24, 88}, {23, 87}, {2, 66}, {3, 67}, {4, 68}, {5, 69}, {6, 70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11, 75}, {12, 76}, {13, 77}, {14, 78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {19, 83}, {20, 84}, {21, 85}, {22, 86}, {38, 102}, {39, 103}, {40, 104}, {41, 105}, {42, 106}, {43, 107}, {44, 108}, {45, 109}, {46, 110}, {47, 111}, {48, 112}, {49, 113}, {50, 114}, {51, 115}, {52, 116}, {53, 117}, {54, 118}, {55, 119}, {56, 120}, {57, 121}, {58, 122}, {59, 123}, {60, 124}, {61, 125}, {62, 126}, {63, 127}, {1, 67}, {36, 102}, {33, 99}, {32, 98}, {29, 95}, {28, 94}, {25, 91}, {24, 90}, {4, 70}, {5, 71}, {8, 74}, {9, 75}, {12, 78}, {13, 79}, {16, 82}, {17, 83}, {20, 86}, {21, 87}, {37, 103}, {40, 106}, {41, 107}, {44, 110}, {45, 111}, {48, 114}, {49, 115}, {52, 118}, {53, 119}, {56, 122}, {57, 123}, {60, 126}, {61, 127}, {2, 68}, {35, 101}, {34, 100}, {27, 93}, {26, 92}, {3, 69}, {10, 76}, {11, 77}, {18, 84}, {19, 85}, {42, 108}, {43, 109}, {50, 116}, {51, 117}, {58, 124}, {59, 125}, {6, 72}, {23, 89}, {22, 88}, {7, 73}, {38, 104}, {39, 105}, {54, 120}, {55, 121}, {14, 80}, {15, 81}, {46, 112}, {47, 113}, {30, 96}, {31, 97}, {63, 64}, {1, 130}, {62, 128}, {63, 129}, {64, 128}, {66, 130}, {65, 129}, {64, 130}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (52, 117)
b: (20, 85)
c: (6, 71)
d: (60, 125)
e: (55, 120)
f: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65)(66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130)
g: (3, 68)
h: (13, 78)
m: (65, 130)
n1: (11, 76)
a1: (21, 86)
b1: (36, 101)
c1: (7, 72)
d1: (40, 105)
e1: (17, 82)
f1: (34, 99)
g1: (35, 100)
h1: (27, 92)
m1: (23, 88)
n2: (4, 69)
a2: (19, 84)
b2: (25, 90)
c2: (39, 104)
d2: (58, 123)
e2: (41, 106)
f2: (28, 93)
g2: (43, 108)
h2: (53, 118)
m2: (29, 94)
n3: (42, 107)
a3: (30, 95)
b3: (45, 110)
c3: (16, 81)
d3: (62, 127)
e3: (14, 79)
f3: (9, 74)
g3: (12, 77)
h3: (37, 102)
m3: (54, 119)
n4: (47, 112)
a4: (50, 115)
b4: (33, 98)
c4: (64, 129)
d4: (57, 122)
e4: (26, 91)
f4: (2, 67)
g4: (51, 116)
h4: (61, 126)
m4: (5, 70)
n5: (8, 73)
a5: (63, 128)
b5: (38, 103)
c5: (22, 87)
d5: (24, 89)
e5: (56, 121)
f5: (49, 114)
g5: (46, 111)
h5: (15, 80)
m5: (18, 83)
n6: (10, 75)
a6: (44, 109)
b6: (48, 113)
c6: (31, 96)
d6: (59, 124)
e6: (2, 65)(3, 64)(4, 63)(5, 62)(6, 61)(7, 60)(8, 59)(9, 58)(10, 57)(11, 56)(12, 55)(13, 54)(14, 53)(15, 52)(16, 51)(17, 50)(18, 49)(19, 48)(20, 47)(21, 46)(22, 45)(23, 44)(24, 43)(25, 42)(26, 41)(27, 40)(28, 39)(29, 38)(30, 37)(31, 36)(32, 35)(33, 34)(67, 130)(68, 129)(69, 128)(70, 127)(71, 126)(72, 125)(73, 124)(74, 123)(75, 122)(76, 121)(77, 120)(78, 119)(79, 118)(80, 117)(81, 116)(82, 115)(83, 114)(84, 113)(85, 112)(86, 111)(87, 110)(88, 109)(89, 108)(90, 107)(91, 106)(92, 105)(93, 104)(94, 103)(95, 102)(96, 101)(97, 100)(98, 99)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 130, 1 ]
130
-1 67 2 130 65
-2 66 1 68 3
-3 67 2 69 4
-4 68 3 70 5
-5 69 4 71 6
-6 70 5 72 7
-7 71 6 73 8
-8 72 7 74 9
-9 73 8 75 10
-10 11 74 9 76
-11 77 12 75 10
-12 11 78 13 76
-13 77 12 79 14
-14 78 13 80 15
-15 79 14 81 16
-16 80 15 82 17
-17 81 16 83 18
-18 82 17 84 19
-19 83 18 85 20
-20 84 19 86 21
-21 22 85 20 87
-22 88 23 86 21
-23 22 89 24 87
-24 88 23 90 25
-25 89 24 91 26
-26 90 25 92 27
-27 91 26 93 28
-28 92 27 94 29
-29 93 28 95 30
-30 94 29 96 31
-31 95 30 97 32
-32 33 96 31 98
-33 99 34 97 32
-34 33 100 35 98
-35 99 34 101 36
-36 100 35 102 37
-37 101 36 103 38
-38 102 37 104 39
-39 103 38 105 40
-40 104 39 106 41
-41 105 40 107 42
-42 106 41 108 43
-43 44 107 42 109
-44 110 45 108 43
-45 44 111 46 109
-46 110 45 112 47
-47 111 46 113 48
-48 112 47 114 49
-49 113 48 115 50
-50 114 49 116 51
-51 115 50 117 52
-52 116 51 118 53
-53 117 52 119 54
-54 55 118 53 120
-55 121 56 119 54
-56 55 122 57 120
-57 121 56 123 58
-58 122 57 124 59
-59 123 58 125 60
-60 124 59 126 61
-61 125 60 127 62
-62 126 61 128 63
-63 127 62 129 64
-64 128 63 130 65
-65 66 1 129 64
-66 67 2 130 65
-67 66 1 68 3
-68 67 2 69 4
-69 68 3 70 5
-70 69 4 71 6
-71 70 5 72 7
-72 71 6 73 8
-73 72 7 74 9
-74 73 8 75 10
-75 11 74 9 76
-76 77 12 75 10
-77 11 78 13 76
-78 77 12 79 14
-79 78 13 80 15
-80 79 14 81 16
-81 80 15 82 17
-82 81 16 83 18
-83 82 17 84 19
-84 83 18 85 20
-85 84 19 86 21
-86 22 85 20 87
-87 88 23 86 21
-88 22 89 24 87
-89 88 23 90 25
-90 89 24 91 26
-91 90 25 92 27
-92 91 26 93 28
-93 92 27 94 29
-94 93 28 95 30
-95 94 29 96 31
-96 95 30 97 32
-97 33 96 31 98
-98 99 34 97 32
-99 33 100 35 98
-100 99 34 101 36
-101 100 35 102 37
-102 101 36 103 38
-103 102 37 104 39
-104 103 38 105 40
-105 104 39 106 41
-106 105 40 107 42
-107 106 41 108 43
-108 44 107 42 109
-109 110 45 108 43
-110 44 111 46 109
-111 110 45 112 47
-112 111 46 113 48
-113 112 47 114 49
-114 113 48 115 50
-115 114 49 116 51
-116 115 50 117 52
-117 116 51 118 53
-118 117 52 119 54
-119 55 118 53 120
-120 121 56 119 54
-121 55 122 57 120
-122 121 56 123 58
-123 122 57 124 59
-124 123 58 125 60
-125 124 59 126 61
-126 125 60 127 62
-127 126 61 128 63
-128 127 62 129 64
-129 128 63 130 65
-130 66 1 129 64
0

**************