[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 130, 5 ] =
PS(26,5;2).
(I) Following is a form readable by MAGMA:
g:=Graph<130|{ {9, 11}, {120, 122}, {109, 111}, {60, 62}, {49, 51}, {40, 42},
{20, 22}, {29, 31}, {69, 71}, {80, 82}, {89, 91}, {100, 102}, {5, 6}, {125,
126}, {120, 123}, {108, 111}, {105, 106}, {60, 63}, {48, 51}, {45, 46}, {40,
43}, {8, 11}, {20, 23}, {25, 26}, {28, 31}, {65, 66}, {68, 71}, {80, 83}, {85,
86}, {88, 91}, {100, 103}, {2, 6}, {123, 127}, {122, 126}, {115, 119}, {114,
118}, {113, 117}, {112, 116}, {105, 109}, {64, 68}, {43, 47}, {42, 46}, {3, 7},
{24, 28}, {25, 29}, {32, 36}, {33, 37}, {34, 38}, {35, 39}, {65, 69}, {72, 76},
{73, 77}, {74, 78}, {75, 79}, {82, 86}, {83, 87}, {104, 108}, {9, 12}, {59, 62},
{49, 52}, {19, 22}, {89, 92}, {99, 102}, {1, 7}, {121, 127}, {113, 119}, {112,
118}, {64, 70}, {59, 61}, {50, 52}, {41, 47}, {10, 12}, {19, 21}, {24, 30}, {32,
38}, {33, 39}, {72, 78}, {73, 79}, {81, 87}, {90, 92}, {99, 101}, {104, 110},
{8, 15}, {115, 116}, {58, 61}, {56, 63}, {50, 53}, {48, 55}, {10, 13}, {16, 23},
{18, 21}, {35, 36}, {75, 76}, {88, 95}, {90, 93}, {96, 103}, {98, 101}, {6, 14},
{117, 125}, {116, 124}, {7, 15}, {16, 24}, {17, 25}, {36, 44}, {37, 45}, {66,
74}, {67, 75}, {86, 94}, {87, 95}, {96, 104}, {97, 105}, {7, 14}, {117, 124},
{17, 24}, {37, 44}, {67, 74}, {87, 94}, {97, 104}, {2, 8}, {114, 120}, {54, 60},
{51, 57}, {3, 9}, {22, 28}, {23, 29}, {34, 40}, {71, 77}, {82, 88}, {83, 89},
{102, 108}, {103, 109}, {1, 10}, {118, 125}, {6, 13}, {18, 25}, {21, 30}, {38,
45}, {66, 73}, {81, 90}, {86, 93}, {98, 105}, {101, 110}, {4, 8}, {55, 59}, {54,
58}, {53, 57}, {52, 56}, {5, 9}, {22, 26}, {23, 27}, {84, 88}, {85, 89}, {102,
106}, {103, 107}, {39, 42}, {119, 122}, {69, 72}, {4, 10}, {119, 121}, {53, 59},
{52, 58}, {21, 27}, {39, 41}, {70, 72}, {84, 90}, {101, 107}, {36, 43}, {118,
121}, {116, 123}, {55, 56}, {51, 60}, {38, 41}, {68, 75}, {70, 73}, {71, 80},
{111, 120}, {46, 54}, {107, 115}, {106, 114}, {47, 55}, {76, 84}, {77, 85}, {47,
54}, {107, 114}, {77, 84}, {11, 17}, {111, 117}, {43, 49}, {42, 48}, {14, 20},
{74, 80}, {41, 50}, {106, 113}, {46, 53}, {78, 85}, {12, 16}, {45, 49}, {44,
48}, {13, 17}, {14, 18}, {15, 19}, {79, 82}, {109, 112}, {12, 18}, {110, 112},
{44, 50}, {13, 19}, {79, 81}, {11, 20}, {110, 113}, {108, 115}, {15, 16}, {76,
83}, {78, 81}, {31, 40}, {26, 34}, {27, 35}, {27, 34}, {31, 37}, {91, 97}, {94,
100}, {26, 33}, {92, 96}, {93, 97}, {94, 98}, {95, 99}, {29, 32}, {30, 32}, {92,
98}, {93, 99}, {28, 35}, {30, 33}, {91, 100}, {95, 96}, {56, 64}, {57, 65}, {57,
64}, {4, 126}, {63, 69}, {62, 68}, {5, 127}, {4, 127}, {61, 70}, {58, 65}, {62,
66}, {63, 67}, {3, 126}, {61, 67}, {1, 129}, {2, 130}, {1, 128}, {3, 130}, {2,
129}, {5, 128}, {122, 128}, {123, 129}, {121, 130}, {124, 128}, {125, 129},
{124, 130} }>;
(II) A more general form is to represent the graph as the orbit of {9, 11}
under the group generated by the following permutations:
a: (2, 3, 5, 4)(6, 126)(7, 128, 10, 129)(8, 130, 9, 127)(11, 121)(12, 123, 15,
124)(13, 125, 14, 122)(16, 116)(17, 118, 20, 119)(18, 120, 19, 117)(21, 111)(22,
113, 25, 114)(23, 115, 24, 112)(26, 106)(27, 108, 30, 109)(28, 110, 29, 107)(31,
101)(32, 103, 35, 104)(33, 105, 34, 102)(36, 96)(37, 98, 40, 99)(38, 100, 39,
97)(41, 91)(42, 93, 45, 94)(43, 95, 44, 92)(46, 86)(47, 88, 50, 89)(48, 90, 49,
87)(51, 81)(52, 83, 55, 84)(53, 85, 54, 82)(56, 76)(57, 78, 60, 79)(58, 80, 59,
77)(61, 71)(62, 73, 65, 74)(63, 75, 64, 72)(67, 68, 70, 69) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91,
96, 101, 106, 111, 116, 121, 126)(2, 8, 15, 19, 22, 28, 35, 39, 42, 48, 55, 59,
62, 68, 75, 79, 82, 88, 95, 99, 102, 108, 115, 119, 122, 128, 5, 9, 12, 18, 25,
29, 32, 38, 45, 49, 52, 58, 65, 69, 72, 78, 85, 89, 92, 98, 105, 109, 112, 118,
125, 129)(3, 10, 14, 17, 23, 30, 34, 37, 43, 50, 54, 57, 63, 70, 74, 77, 83, 90,
94, 97, 103, 110, 114, 117, 123, 130, 4, 7, 13, 20, 24, 27, 33, 40, 44, 47, 53,
60, 64, 67, 73, 80, 84, 87, 93, 100, 104, 107, 113, 120, 124, 127)
c: (1, 2)(3, 5)(6, 7)(8, 10)(11, 12)(13, 15)(16, 17)(18, 20)(21, 22)(23, 25)(26,
27)(28, 30)(31, 32)(33, 35)(36, 37)(38, 40)(41, 42)(43, 45)(46, 47)(48, 50)(51,
52)(53, 55)(56, 57)(58, 60)(61, 62)(63, 65)(66, 67)(68, 70)(71, 72)(73, 75)(76,
77)(78, 80)(81, 82)(83, 85)(86, 87)(88, 90)(91, 92)(93, 95)(96, 97)(98,
100)(101, 102)(103, 105)(106, 107)(108, 110)(111, 112)(113, 115)(116, 117)(118,
120)(121, 122)(123, 125)(126, 127)(128, 130)
d: (2, 5)(3, 4)(7, 10)(8, 9)(12, 15)(13, 14)(17, 20)(18, 19)(22, 25)(23, 24)(27,
30)(28, 29)(32, 35)(33, 34)(37, 40)(38, 39)(42, 45)(43, 44)(47, 50)(48, 49)(52,
55)(53, 54)(57, 60)(58, 59)(62, 65)(63, 64)(67, 70)(68, 69)(72, 75)(73, 74)(77,
80)(78, 79)(82, 85)(83, 84)(87, 90)(88, 89)(92, 95)(93, 94)(97, 100)(98,
99)(102, 105)(103, 104)(107, 110)(108, 109)(112, 115)(113, 114)(117, 120)(118,
119)(122, 125)(123, 124)(127, 130)(128, 129)
C4[ 130, 5 ]
130
-1 7 128 129 10
-2 6 8 129 130
-3 126 7 9 130
-4 126 127 8 10
-5 6 127 128 9
-6 2 13 14 5
-7 1 3 14 15
-8 11 2 4 15
-9 11 12 3 5
-10 1 12 13 4
-11 17 8 9 20
-12 16 18 9 10
-13 6 17 19 10
-14 6 7 18 20
-15 16 7 8 19
-16 12 23 24 15
-17 11 13 24 25
-18 12 14 25 21
-19 22 13 15 21
-20 11 22 23 14
-21 27 18 19 30
-22 26 28 19 20
-23 16 27 29 20
-24 16 17 28 30
-25 26 17 18 29
-26 22 33 34 25
-27 23 34 35 21
-28 22 24 35 31
-29 23 25 31 32
-30 33 24 21 32
-31 37 28 29 40
-32 36 38 29 30
-33 26 37 39 30
-34 26 27 38 40
-35 36 27 28 39
-36 44 35 32 43
-37 33 44 45 31
-38 34 45 41 32
-39 33 35 41 42
-40 34 31 42 43
-41 47 38 39 50
-42 46 48 39 40
-43 36 47 49 40
-44 36 37 48 50
-45 46 37 38 49
-46 45 42 53 54
-47 55 41 43 54
-48 44 55 51 42
-49 45 51 52 43
-50 44 41 52 53
-51 57 48 49 60
-52 56 58 49 50
-53 46 57 59 50
-54 46 47 58 60
-55 56 47 48 59
-56 55 52 63 64
-57 51 53 64 65
-58 61 52 54 65
-59 55 61 62 53
-60 51 62 63 54
-61 67 58 59 70
-62 66 68 59 60
-63 56 67 69 60
-64 56 57 68 70
-65 66 57 58 69
-66 62 73 74 65
-67 61 63 74 75
-68 71 62 64 75
-69 71 72 63 65
-70 61 72 73 64
-71 77 68 69 80
-72 78 69 70 76
-73 66 77 79 70
-74 66 67 78 80
-75 67 68 79 76
-76 72 83 84 75
-77 71 73 84 85
-78 81 72 74 85
-79 81 82 73 75
-80 71 82 83 74
-81 78 79 90 87
-82 88 79 80 86
-83 89 80 76 87
-84 77 88 90 76
-85 77 78 89 86
-86 82 93 94 85
-87 81 83 94 95
-88 91 82 84 95
-89 91 92 83 85
-90 81 92 93 84
-91 88 89 100 97
-92 89 90 96 98
-93 99 90 86 97
-94 100 86 87 98
-95 88 99 96 87
-96 92 103 104 95
-97 91 93 104 105
-98 101 92 94 105
-99 101 102 93 95
-100 91 102 103 94
-101 99 110 107 98
-102 99 100 106 108
-103 100 96 107 109
-104 110 96 97 108
-105 106 97 98 109
-106 102 113 114 105
-107 101 103 114 115
-108 111 102 104 115
-109 111 112 103 105
-110 101 112 113 104
-111 117 108 109 120
-112 110 116 118 109
-113 110 106 117 119
-114 106 107 118 120
-115 116 107 108 119
-116 112 123 124 115
-117 111 113 124 125
-118 121 112 114 125
-119 121 122 113 115
-120 111 122 123 114
-121 127 118 119 130
-122 126 128 119 120
-123 116 127 129 120
-124 116 117 128 130
-125 126 117 118 129
-126 122 3 4 125
-127 121 123 4 5
-128 1 122 124 5
-129 1 2 123 125
-130 121 2 3 124
0