[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 132, 1 ] =
W(66,2).
(I) Following is a form readable by MAGMA:
g:=Graph<132|{ {2, 3}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122,
123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111},
{108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {38, 39}, {36, 37},
{34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {40,
41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56,
57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {1, 2}, {129, 130}, {125,
126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102},
{97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70},
{37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66},
{3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92},
{83, 84}, {75, 76}, {67, 68}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44},
{51, 52}, {59, 60}, {7, 8}, {119, 120}, {103, 104}, {87, 88}, {71, 72}, {23,
24}, {39, 40}, {55, 56}, {15, 16}, {111, 112}, {79, 80}, {47, 48}, {31, 32},
{95, 96}, {2, 67}, {38, 103}, {36, 101}, {34, 99}, {32, 97}, {30, 95}, {28, 93},
{26, 91}, {24, 89}, {4, 69}, {6, 71}, {8, 73}, {10, 75}, {12, 77}, {14, 79},
{16, 81}, {18, 83}, {20, 85}, {22, 87}, {40, 105}, {42, 107}, {44, 109}, {46,
111}, {48, 113}, {50, 115}, {52, 117}, {54, 119}, {56, 121}, {58, 123}, {60,
125}, {62, 127}, {1, 66}, {37, 102}, {36, 103}, {33, 98}, {32, 99}, {29, 94},
{28, 95}, {25, 90}, {24, 91}, {4, 71}, {5, 70}, {8, 75}, {9, 74}, {12, 79}, {13,
78}, {16, 83}, {17, 82}, {20, 87}, {21, 86}, {40, 107}, {41, 106}, {44, 111},
{45, 110}, {48, 115}, {49, 114}, {52, 119}, {53, 118}, {56, 123}, {57, 122},
{60, 127}, {61, 126}, {1, 68}, {35, 102}, {33, 100}, {27, 94}, {25, 92}, {3,
70}, {9, 76}, {11, 78}, {17, 84}, {19, 86}, {41, 108}, {43, 110}, {49, 116},
{51, 118}, {57, 124}, {59, 126}, {2, 69}, {35, 100}, {34, 101}, {27, 92}, {26,
93}, {3, 68}, {10, 77}, {11, 76}, {18, 85}, {19, 84}, {42, 109}, {43, 108}, {50,
117}, {51, 116}, {58, 125}, {59, 124}, {5, 72}, {37, 104}, {23, 90}, {7, 74},
{21, 88}, {39, 106}, {53, 120}, {55, 122}, {6, 73}, {38, 105}, {7, 72}, {22,
89}, {23, 88}, {39, 104}, {54, 121}, {55, 120}, {13, 80}, {15, 82}, {45, 112},
{47, 114}, {14, 81}, {15, 80}, {46, 113}, {47, 112}, {29, 96}, {31, 98}, {30,
97}, {31, 96}, {63, 64}, {1, 132}, {61, 128}, {63, 130}, {62, 129}, {63, 128},
{64, 129}, {66, 131}, {64, 131}, {65, 130}, {65, 132}, {67, 132}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (48, 114) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (40, 106)
c: (7, 73)
d: (31, 97)
e: (51, 117)
f: (20, 86)
g: (2, 66)(3, 65)(4, 64)(5, 63)(6, 62)(7, 61)(8, 60)(9, 59)(10, 58)(11, 57)(12,
56)(13, 55)(14, 54)(15, 53)(16, 52)(17, 51)(18, 50)(19, 49)(20, 48)(21, 47)(22,
46)(23, 45)(24, 44)(25, 43)(26, 42)(27, 41)(28, 40)(29, 39)(30, 38)(31, 37)(32,
36)(33, 35)(68, 132)(69, 131)(70, 130)(71, 129)(72, 128)(73, 127)(74, 126)(75,
125)(76, 124)(77, 123)(78, 122)(79, 121)(80, 120)(81, 119)(82, 118)(83, 117)(84,
116)(85, 115)(86, 114)(87, 113)(88, 112)(89, 111)(90, 110)(91, 109)(92, 108)(93,
107)(94, 106)(95, 105)(96, 104)(97, 103)(98, 102)(99, 101)
h: (8, 74)
m: (39, 105)
n1: (44, 110)
a1: (59, 125)
b1: (28, 94)
c1: (4, 70)
d1: (35, 101)
e1: (27, 93)
f1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66)(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132)
g1: (3, 69)
h1: (52, 118)
m1: (36, 102)
n2: (64, 130)
a2: (11, 77)
b2: (19, 85)
c2: (15, 81)
d2: (56, 122)
e2: (23, 89)
f2: (16, 82)
g2: (24, 90)
h2: (55, 121)
m2: (47, 113)
n3: (60, 126)
a3: (12, 78)
b3: (43, 109)
c3: (65, 131)
d3: (45, 111)
e3: (22, 88)
f3: (46, 112)
g3: (21, 87)
h3: (49, 115)
m3: (18, 84)
n4: (50, 116)
a4: (17, 83)
b4: (53, 119)
c4: (5, 71)
d4: (62, 128)
e4: (6, 72)
f4: (61, 127)
g4: (9, 75)
h4: (58, 124)
m4: (10, 76)
n5: (57, 123)
a5: (13, 79)
b5: (54, 120)
c5: (14, 80)
d5: (25, 91)
e5: (42, 108)
f5: (26, 92)
g5: (41, 107)
h5: (29, 95)
m5: (38, 104)
n6: (30, 96)
a6: (37, 103)
b6: (33, 99)
c6: (34, 100)
d6: (66, 132)
e6: (2, 68)
f6: (63, 129)
C4[ 132, 1 ]
132
-1 66 132 2 68
-2 1 67 3 69
-3 2 68 4 70
-4 3 69 5 71
-5 4 70 6 72
-6 5 71 7 73
-7 6 72 8 74
-8 7 73 9 75
-9 8 74 10 76
-10 11 77 9 75
-11 12 78 10 76
-12 11 77 13 79
-13 12 78 14 80
-14 13 79 15 81
-15 14 80 16 82
-16 15 81 17 83
-17 16 82 18 84
-18 17 83 19 85
-19 18 84 20 86
-20 19 85 21 87
-21 22 88 20 86
-22 23 89 21 87
-23 22 88 24 90
-24 23 89 25 91
-25 24 90 26 92
-26 25 91 27 93
-27 26 92 28 94
-28 27 93 29 95
-29 28 94 30 96
-30 29 95 31 97
-31 30 96 32 98
-32 33 99 31 97
-33 34 100 32 98
-34 33 99 35 101
-35 34 100 36 102
-36 35 101 37 103
-37 36 102 38 104
-38 37 103 39 105
-39 38 104 40 106
-40 39 105 41 107
-41 40 106 42 108
-42 41 107 43 109
-43 44 110 42 108
-44 45 111 43 109
-45 44 110 46 112
-46 45 111 47 113
-47 46 112 48 114
-48 47 113 49 115
-49 48 114 50 116
-50 49 115 51 117
-51 50 116 52 118
-52 51 117 53 119
-53 52 118 54 120
-54 55 121 53 119
-55 56 122 54 120
-56 55 121 57 123
-57 56 122 58 124
-58 57 123 59 125
-59 58 124 60 126
-60 59 125 61 127
-61 60 126 62 128
-62 61 127 63 129
-63 62 128 64 130
-64 63 129 65 131
-65 66 132 64 130
-66 1 67 65 131
-67 66 132 2 68
-68 1 67 3 69
-69 2 68 4 70
-70 3 69 5 71
-71 4 70 6 72
-72 5 71 7 73
-73 6 72 8 74
-74 7 73 9 75
-75 8 74 10 76
-76 11 77 9 75
-77 12 78 10 76
-78 11 77 13 79
-79 12 78 14 80
-80 13 79 15 81
-81 14 80 16 82
-82 15 81 17 83
-83 16 82 18 84
-84 17 83 19 85
-85 18 84 20 86
-86 19 85 21 87
-87 22 88 20 86
-88 23 89 21 87
-89 22 88 24 90
-90 23 89 25 91
-91 24 90 26 92
-92 25 91 27 93
-93 26 92 28 94
-94 27 93 29 95
-95 28 94 30 96
-96 29 95 31 97
-97 30 96 32 98
-98 33 99 31 97
-99 34 100 32 98
-100 33 99 35 101
-101 34 100 36 102
-102 35 101 37 103
-103 36 102 38 104
-104 37 103 39 105
-105 38 104 40 106
-106 39 105 41 107
-107 40 106 42 108
-108 41 107 43 109
-109 44 110 42 108
-110 45 111 43 109
-111 44 110 46 112
-112 45 111 47 113
-113 46 112 48 114
-114 47 113 49 115
-115 48 114 50 116
-116 49 115 51 117
-117 50 116 52 118
-118 51 117 53 119
-119 52 118 54 120
-120 55 121 53 119
-121 56 122 54 120
-122 55 121 57 123
-123 56 122 58 124
-124 57 123 59 125
-125 58 124 60 126
-126 59 125 61 127
-127 60 126 62 128
-128 61 127 63 129
-129 62 128 64 130
-130 63 129 65 131
-131 66 132 64 130
-132 1 67 65 131
0